运算电路的频率响应与冲激响应


极点的品质因数 Q p Q_p Qp

频率响应

1. 幅频响应

(1) 幅频响应方程式的求解

∣ H ( j ω ) ∣ = H 0 ∏ i = 1 m ∣ ( j ω − z i ) ∣ ∏ j = 1 n ∣ ( j ω − p j ) ∣ |H(j\omega)| = H_0\frac{\prod_{i=1}^{m} |(j\omega - z_i)|}{\prod_{j=1}^{n}|(j\omega - pj)| } H(jω)=H0j=1n(jωpj)i=1m(jωzi)

  • z i z_i zi:零点
  • p j p_j pj:极点
方法一:已知电路结构

步骤①:求出相应的运算形式网络函数 H ( s ) H(s) H(s)
步骤②:用 j ω j\omega jω 代替 s s s,得到 H ( j ω ) H(j\omega) H(jω)
步骤③:分子分母同时取模,得到 ∣ H ( j ω ) ∣ |H(j\omega)| H(jω)

方法二:已知极、零点图

步骤①:根据极、零点图,直接写出 ∣ H ( j ω ) ∣ |H(j\omega)| H(jω)

如果没有零点,分子为1.

步骤②:

(2) 幅频响应曲线

根据 ∣ H ( j ω ) ∣ |H(j\omega)| H(jω)极、零点图的几何关系,定性画出曲线。

Q p < 1 2 Q_p<\frac{1}{\sqrt{2}} Qp<2 1时, ∣ H ( j ω ) ∣ |H(j\omega)| H(jω) ω \omega ω的增大而减小
Q p ≥ 1 2 Q_p\ge \frac{1}{\sqrt{2}} Qp2 1时, ∣ H ( j ω ) ∣ |H(j\omega)| H(jω)存在峰值

2. 相频响应

a r g [ H ( j ω ) ] = ∑ i = 1 m a r g ( j ω − z i ) + ∑ j = 1 n ( j ω − p j ) arg[H(j\omega)] = \sum_{i=1}^m arg(j\omega - z_i) + \sum_{j=1}^n(j\omega - p_j) arg[H(jω)]=i=1marg(jωzi)+j=1n(jωpj)

冲激响应

已知冲激响应的网络函数 H ( s ) H(s) H(s),不必用拉普拉斯反变换求出时域的冲激响应,根据网络函数的极点分布可定性画出冲激响应 h ( t ) h(t) h(t)的曲线。

常见情况如下图所示:
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值