SpaceNet 建筑物检测

本文档介绍了如何使用Python脚本和Jupyter笔记本,结合SpaceNet数据集训练和评估卷积神经网络(如U-Net),用于卫星影像中的建筑物检测。通过Docker镜像设置环境,预处理数据,然后训练模型,并使用TensorBoard监控进度。最后,通过定量和定性评估方法检查模型性能。
摘要由CSDN通过智能技术生成

SpaceNet 建筑物检测

该存储库提供了一些 python 脚本和 jupyter 笔记本来训练和评估从SpaceNet卫星图像中提取建筑物的卷积神经网络。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS 数据栈

谢谢打赏!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值