请务必按顺序看。
题解1
题解2
题解3
好了可以骂我毒瘤博主了。
题解3的巧妙之处在于把多项式的次数从 s s s转移到了 m m m,但是实在是太巧了,恰好覆盖了所有题目中的已知有用条件( t ≤ 1 e 5 t\leq 1e5 t≤1e5不算,这个做法可以做 t ≤ 1 e 18 t\leq 1e18 t≤1e18的)。
给个代码吧。
#include<bits/stdc++.h>
#define LL long long
#define maxn 1005
#define mod 1000000007
using namespace std;
int K;
struct Poly{
int a[maxn];
Poly (){ memset(a,0,sizeof a); }
Poly operator *(const Poly &B)const{
Poly ret;
for(int i=0;i<K;i++) for(int j=0;j<K-i;j++)
ret.a[i+j] = (ret.a[i+j] + 1ll * a[i] * B.a[j]) % mod;
return ret;
}
};
Poly Pow(Poly b,LL k){ Poly r;r.a[0]=1;for(;k;k>>=1,b=b*b) if(k&1) r=r*b;return r; }
int main(){
freopen("success.in","r",stdin);
freopen("success.out","w",stdout);
LL s;int t,n,m;
scanf("%lld%d%d%d",&s,&t,&n,&m);
K=m-n+2;
Poly A,C;
A.a[0] = A.a[1] = C.a[0] = C.a[1] = 1;
A = Pow(A , t);
for(int i=0;i<K-1;i++) A.a[i] = A.a[i+1];
A = Pow(A , n);
C = Pow(C , s-n*t);
A = A * C;
printf("%d\n",A.a[m-n]);
}