【多目标跟踪】ByteTrack复现(有yolov5例子)

本文档介绍了如何在PyTorch环境中复现ByteTrack多目标跟踪算法,并将其与yolov5检测器结合。首先,通过修改setup.py解决编码问题,接着从官方或指定位置下载模型并存放在预训练模型目录。然后,演示了运行demo的步骤,结果显示在YOLOX_outputs目录。最后,提供了将检测器替换为yolov5的初步资源链接,建议使用训练好的yolov5模型以获得更好效果。
摘要由CSDN通过智能技术生成

1.环境

ubuntu16.04
cuda10.1
cudnn7
python3.6
 
 
Cython
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3
scipy>=1.4.1
tensorboard>=2.2
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0
seaborn>=0.11.0
easydict

loguru
Pillow
thop
ninja
tabulate
tensorboard
lap
motmetrics
filterpy
h5py

# verified versions
onnx==1.8.1
onnxruntime==1.8.0
onnx-simplifier==0.3.5
git clone https://github.com/ifzhang/ByteTrack.git
cd ByteTrack
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

修改setup.py如下(否则会报ascii错误):


                
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聿默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值