ByteTrack: Multi-Object Tracking by Associating Every Detection Box论文理解及代码复现

本文深入探讨了ByteTrack论文,该方法通过保留所有检测框避免跟踪中断,利用运动相似性和卡尔曼滤波进行匹配。ByteTrack使用YOLOX作为检测器,仅依赖运动模型实现高效多目标跟踪。在代码复现部分,作者训练了模型并在MOT17数据集上取得良好效果。
摘要由CSDN通过智能技术生成

ByteTrack: Multi-Object Tracking by Associating Every Detection Box论文理解及代码复现

在这里插入图片描述

论文地址:https://arxiv.org/pdf/2110.06864.pdf
代码地址:https://github.com/ifzhang/ByteTrack

一、论文理解

1 提出问题

从检测任务对接到跟踪任务时,采用阈值过滤掉检测网络输出的边界框,使得检测信息出现丢失,造成跟踪过程出现中断的情况,使得跟踪任务对检测任务的要求过高。低置信度检测框有时表示物体的存在,如被遮挡的物体。BYTE保留了每个检测框,并将其分为高分检测框和低分检测框。

2、匹配方法

首先根据运动相似性将高分检测框与轨迹匹配,使用卡尔曼滤波器在新帧中预测轨迹的位置。运动相似性可以通过预测框和检测框的IoU来计算。在未匹配的tracklet之间执行第二次匹配。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值