ByteTrack: Multi-Object Tracking by Associating Every Detection Box论文理解及代码复现
论文地址:https://arxiv.org/pdf/2110.06864.pdf
代码地址:https://github.com/ifzhang/ByteTrack
一、论文理解
1 提出问题
从检测任务对接到跟踪任务时,采用阈值过滤掉检测网络输出的边界框,使得检测信息出现丢失,造成跟踪过程出现中断的情况,使得跟踪任务对检测任务的要求过高。低置信度检测框有时表示物体的存在,如被遮挡的物体。BYTE保留了每个检测框,并将其分为高分检测框和低分检测框。
2、匹配方法
首先根据运动相似性将高分检测框与轨迹匹配,使用卡尔曼滤波器在新帧中预测轨迹的位置。运动相似性可以通过预测框和检测框的IoU来计算。在未匹配的tracklet之间执行第二次匹配。