卡尔曼滤波:高斯过程 + 贝叶斯推断

本文从高斯过程的角度探讨卡尔曼滤波,详细阐述预测(高斯过程)和更新(贝叶斯推断)两个核心步骤。通过状态空间方程和观测值,卡尔曼滤波提供了一种优化系统状态估计的方法,通过不断迭代提高观测准确性。
摘要由CSDN通过智能技术生成

前言

  • PRML中提到,卡尔曼滤波是高斯过程的一种应用,本文便从高斯过程的角度来总结一下卡尔曼滤波;
  • 首先明确卡尔曼滤波包括两部分:预测和更新。预测就是根据系统上一时刻的状态最优估计 S k − 1 S_{k-1} Sk1预测当前时刻的状态 S k S_{k} Sk;更新就是通过当前时刻的观察值 Z k Z_k Zk更新当前时刻的状态预测值,作为当前时刻的最优估计 S k ′ S_{k}' Sk。以此方法迭代。
  • 其次明确系统的真实状态是确定的、唯一的,但是!!我们得到的所有估计值都是不确定的,是一个随机变量,因此使用二阶统计量(均值、协方差)来描述。

预测(高斯过程)

  • 设上一时刻的系统状态的最优估计为 S k − 1 S_{k-1} Sk1,其服从多元高斯分布:
    S k − 1 ∼ N ( x ^ k − 1 , P k − 1 ) S_{k-1}\sim\mathcal{N}(\hat{x}_{k-1},P_{k-1}) Sk1N(x^k1,Pk1)
  • 系统状态空间方程描述了状态转换的规则:
    S k = F k S k − 1 + B k u k S_{k}=F_kS_{k-1}+B_ku_k Sk=FkSk1+Bkuk
    F k F_k Fk状态转移矩阵, B k B_k Bk控制矩阵, u k u_k uk控制量;
  • 由上一时刻系统状态随机变量 S k − 1 S_{k-1} Sk1转换到当前时刻系统状态随机变量 S k S_{k} Sk就是一个高斯过程,我们虽然对该转换进行了建模(状态空间方程),但是仍然存在一些不可控因素(风阻、打滑、突发事件等),因此加入独立随机噪声 ϵ ∼ N ( 0 , Q k ) \epsilon\sim\mathcal{N}(\mathbf{0},Q_k) ϵN(0,Qk),因此真实的状态空间方程应该是这样的:
    S k = F k S k − 1
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值