Machine Learning Theory - L1 Concentration Inequalities

Machine Learning Theory - L1 Concentration Inequalities

This is the first lecture of course Machine Learning Theory (AI603). This lecture introduced some basic but useful concentration inequalities.

What are concentration inequalities?

Concentration inequalities furnish us bounds on how random variables deviate from a value (typically, expected value) or help us to understand how well they are concentrated.

Introduction to Concentration Inequalities

Why we need?

A classification algorithm has an error probability ϵ, i.e., the output of the algorithm misclassifies a randomly sampled data with probability ϵ. What is the probability of the event that the algorithm misclassifies more than 200ϵ data points among 100 data points.

1 Markov Inequality


Theorem: If X X X is a non-negative random variable,
P ( X ≥ a ) ≤ E [ X ] a , ∀ a > 0 \mathbb P(X\ge a) \le\frac{\mathbb E[X]} a, \forall a>0 P(Xa)aE[X],a>0


Proof:

Let f f f be the probability density function (PDF) of X X X.
E [ X ] = ∫ 0 ∞ x f ( x ) d x ≥ ∫ a ∞ x f ( x ) d x ≥ a ∫ a ∞ f ( x ) d x = a P ( X ≥ a ) \begin{aligned}{} \mathbb E[X]&=\int^\infty_0xf(x)dx\\ &\ge \int^\infty_a xf(x)dx \\&\ge a\int^\infty_a f(x)dx\\ &=a\mathbb P(X\ge a) \end {aligned} E[X]=0xf(x)dxaxf(x)dxaaf(x)dx=aP(Xa)
By rearranging the terms,
P ( X ≥ a ) ≤ E [ X ] a \mathbb P(X\ge a)\le\frac{\mathbb E[X]}a P(Xa)aE[X]

A simple trick to make positive random variables:

A non-negative strictly increasing function ϕ ( x ) = e θ x \phi (x)=e^{\theta x} ϕ(x)=eθx

Then, with Markov Inequality we have Chernoff bound:
P ( X ≥ a ) = P ( e X ≥ e a ) = P ( e θ X ≥ e θ a ) ≤ E [ e θ X ] e θ a      ∀ a , θ > 0 \mathbb P(X\ge a)=\mathbb P(e^X\ge e^a)=\mathbb P(e^{\theta X}\ge e^{\theta a})\\ \le \frac{\mathbb E[e^{\theta X}]}{e^{\theta a}}~~~~\forall a,\theta>0 P(Xa)=P(eXea)=P(eθXeθa)eθaE[eθX]    a,θ>0
When X X X is the sum of independent random variables X 1 , … , X n X_1,\dots,X_n X1,,Xn,
P ( X ≥ a ) ≤ inf ⁡ θ > 0 E [ e θ X ] e θ a = inf ⁡ θ > 0 ∏ i = 1 n E [ e θ X i ] e θ a      ∀ a > 0 \mathbb P(X\ge a)\le\inf_{\theta>0}\frac{\mathbb E[e^{\theta X}]}{e^{\theta a}}=\inf_{\theta>0}\frac{\prod^n_{i=1}\mathbb E[e^{\theta X_i}]}{e^{\theta a}}~~~~\forall a>0 P(Xa)θ>0infeθaE[eθX]=θ>0infeθai=1nE[eθXi]    a>0

2 Chernoff-Hoeffding


Theorem: Let X 1 , … , X n X_1,\dots,X_n X1,,Xn be i.i.d. Bernoulli random variables f X ( x ) = p x ( 1 − p ) 1 − x = { [ l ]   p     if  x = 1 , q     if  x = 0. f_X(x)=p^x(1-p)^{1-x}=\left \{\begin{aligned}[l]\ p~~~~\text{if }x=1,\\q~~~~ \text{if }x=0.\end{aligned} \right. fX(x)=px(1p)1x={ [l] p    if x=1,q    if x=0. with probability p p p. When 0 < p ≤ q 0<p\le q 0<pq,
P ( ∑ i = 1 n X i ≥ n q ) ≤ e − n D ( q ∣ ∣ p ) , \mathbb P(\sum^n_{i=1}X_i\ge nq)\le e^{-nD(q||p)}, P(i=1nXinq)enD(qp),
where D ( q ∣ ∣ p ) = q log ⁡ p q + ( 1 − q ) log ⁡ 1 − q 1 − p D(q||p)=q\log \frac p q +(1-q)\log\frac{1-q}{1-p} D(qp)=qlogqp+(1q)log1p1q is the KL-divergence. When 0 < q ≤ p 0<q\le p 0<qp,
P ( ∑ i = 1 n X i ≤ n q ) ≤ e − n D ( q ∣ ∣ p ) . \mathbb P(\sum^n_{i=1}X_i\le nq)\le e^{-nD(q||p)}. P(i=1nXinq)enD(qp).


Proof:

From the Markov inequality, for all θ > 0 \theta>0 θ>0
P ( ∑ i = 1 n X i ≥ n q ) ≤ E [ e θ ∑ i = 1 n X i ] e θ n q = ∏ i = 1 n E [ e θ X i ] e θ n q = ∏ i = 1 n ( p e θ + 1 − p ) e θ n q . = exp ⁡ ( − θ n q ) ( p e θ + 1 − p ) n \begin{aligned} \mathbb P(\sum^n_{i=1}X_i\ge nq)&\le\frac{\mathbb E[e^{\theta\sum^n_{i=1}X_i}]}{e^{\theta nq}}\\ &=\frac{\prod^n_{i=1}\mathbb E[e^{\theta X_i}]}{e^{\theta nq}}\\ &=\frac{\prod^n_{i=1}(pe^\theta+1-p)}{e^{\theta nq}}.\\ &=\exp(-\theta nq)(pe^{\theta}+1-p)^n \end{aligned} P(i=1nXinq)eθnqE[eθi=1nXi]=eθnqi=1nE[eθXi]=eθnqi=1n(peθ+1p).=exp(θnq)(peθ+1p)n
To find the minimization of the above equality, let ϕ ( θ ) = ln ⁡ ( exp ⁡ ( − θ n q ) ( p e θ + 1 − p ) n ) \phi(\theta)=\ln (\exp(-\theta nq)(pe^{\theta}+1-p)^n) ϕ(θ)=ln(exp(θnq)(peθ+1p)n).
ϕ ( θ ) = − θ n q + n ln ⁡ ( p e θ + 1 − p ) ϕ ′ ( θ ) = − n q + n p e θ p e θ + 1 − p = 0 e θ = q 2 p 2 = q ( 1 − p ) p ( 1 − q ) \begin{aligned} \phi(\theta)=-\theta nq+n\ln(pe^\theta +1-p)\\ \phi'(\theta)=-nq+\frac{npe^\theta}{pe^\theta +1-p}=0\\ e^\theta=\frac{q^2} {p^2}=\frac{q(1-p)} {p(1-q)} \end{aligned} ϕ(θ)=θnq+nln(peθ+1p)ϕ(θ)=nq+peθ+1pnpeθ=0eθ=p2q2=p(1q)q(1p)
Thus, with θ = log ⁡ ( q ( 1 − p ) p ( 1 − q ) ) \theta=\log(\frac{q(1-p)}{p(1-q)}) θ=log(p(1q)q(1p)),
P ( ∑ i = 1 n X i ≥ n q ) ≤ e − n D ( q ∣ ∣ p ) . \mathbb P(\sum^n_{i=1}X_i\ge nq)\le e^{-nD(q||p)}. P(i=1nXinq)enD(qp).

3 Hoeffding’s inequality


Lemma: Let X ∈ [ a , b ] X\in[a,b] X[a,b] be a random variable. Then, for all θ > 0 \theta>0 θ>0,
E [ e θ ( X − E [ X ] ) ] ≤ exp ⁡ ( θ 2 ( b − a ) 2 8 ) . \mathbb E[e^{\theta(X-\mathbb E[X])}]\le\exp(\frac{\theta^2(b-a)^2}8). E[eθ(XE[X])]exp(8θ2(ba)2).
Theorem: Let X 1 , … , X n X_1,\dots,X_n X1,,Xn be independent random variables. When X i X_i Xi is bounded by [ a i , b i ] [a_i,b_i] [ai,bi] for all i i i,
P ( 1 n ∑ t = 1 n ( X i − E [ X i ] ) ≥ t ) ≤ exp ⁡ ( − 2 n 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) . \mathbb P(\frac 1 n\sum^n_{t=1}(X_i-\mathbb E[X_i])\ge t)\le\exp(-\frac{2n^2t^2}{\sum^n_{i=1}(b_i-a_i)^2}). P(n1t=1n(XiE[Xi])t)exp(i=1n(biai)22n2t2).


Proof:

Let Y = X − E [ X ] Y=X-\mathbb E[X] Y=X

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值