一.前言
毫米波雷达波长较短,在信号传输过程中容易受噪声影响,会产生能量泄漏、畸变等,采用FFT会产生栅栏效应。因此,我们需要对FFT之后的频域信号作一系列频谱细化,以减小误差。
频谱细化可以提高FFT分辨率,在FFT中,所得到的频谱图是将信号频率区间等分为N个点,在每个点上求解频率分量的振幅和相位信息。由于计算机的处理能力和存储能力限制,所以通常选择将频率区间等分为2的幂次方个点来进行FFT计算。当信号频谱变化很缓慢且频率分量离散,这种FFT处理方式就能够给出准确的频域信号。
二.频谱细化介绍
可以通过对信号进行插值或增加信号长度来进行频谱细化,即增加FFT计算点数,从而提高分辨率。
本次实验主要是使用FFT+FT,就是先将信号进行FFT变换,得到其频域表示,然后经过插值、加窗等方式进行处理,最后通过FT变换将其转换为时域信号,即从时域→频域→一系列处理→时域。
例:细化倍数D,采样频率,采样点N,频率分辨率为
,
为细化后的中心频率,
降低D倍,FFT采用N点计算,得到N条谱线,频率分辨率
提高了D倍。
三.FFT+FT原理
本质是将连续傅里叶变换经过将积分变为求和、时域离散化和时域截断,这三个步骤将信号变换到时间离散、频率连续的特殊傅里叶变换形式。FFT+FT只选择部分需要着重关注的频谱,进行离散FT实现频率细化,流程图如下所示:
其中,为单一单一信号序列,
是归一化频率,
为FFT采样点数,
为采样频率。
时域离散化后,将代入
中得:
然后将时域截断为长度为N的信号段:
DTF实部虚部分别为:
在一个频率区间中,用L进行等间隔分析
为频率分辨率,再确定计算频率序列{
},然后再进行L+1个点实部和虚部的计算,再合成幅值谱和相位谱,最终在细化后的频谱中找到最大值对应的频率,就是最终频率估计值。
四.源码下载地址
-------------------------------------------------------我的其他代码--------------------------------------------------------