【简单理解】torch.nonzero(同样适用于获取tensor中某一元素的索引)

torch.nonzero其实就是找出tensor中非零的元素的索引

import torch
label = torch.tensor([[1,0,0],
                      [1,0,1]])
print(label.nonzero())

返回的结果:

tensor([[0, 0],
        [1, 0],
        [1, 2]])

返回的结果就是非零元素的索引,其中[0,0]对应了第一行第一列的1,[1,0]对应了第二行第一列的1,[1,2]对应了第二行第三列的1。

 

延伸:

有时我们只想得到一种元素对应的索引,比如我们只想要1对应的索引

import torch
label = torch.tensor([[1,0,0],
                      [3,0,1]])
print((label==1).nonzero())

返回的结果:

tensor([[0, 0],
        [1, 2]])

或者,我们想要一定条件下的元素的索引,比如大于1的元素的索引

import torch
label = torch.tensor([[1,0,0],
                      [3,0,1]])
print((label>1).nonzero())

返回结果:

tensor([[1, 0]])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值