深度剖析Kaggle竞赛:策略布局、入门指南与书单推荐一网打尽!

这两年人工智能爆火,为了提升学术竞争力,理工科的很多学生纷纷把目光投向了Kaggle人工智能竞赛。

Kaggle是一个全球知名的数据科学学术活动在线平台。由Anthony Goldbloom和Ben Hamner创立于2010年,是一个进行数据发掘和预测学术活动的在线平台,也是全球最大的数据科学社区和数据科学学术活动平台,2017年被Google收购。从公司的角度来讲,可以提供一些数据,进而提出一个实际需要解决的问题;从参赛者的角度来讲,他们将组队参与项目,针对其中一个问题提出解决方案,最终由公司选出的最佳方案可以获得5K-10K美金的奖金。

图片

它举办的竞赛涵盖自然语言处理、大数据医疗等众多前沿领域,如 “WSDM Cup - Multilingual Chatbot Arena”,“LLMs - You Can't Please Them All”等,吸引了全球各地的人才参与。这些竞赛题目源于实际,极具挑战性,为参赛者提供了广阔的施展空间。

Kaggle竞赛为学生提供了展示学术能力、获得实践经验、建立学术网络和掌握数据科学技能的机会,而其在领域内的知名度也足以让你在众多申请者中脱颖而出,让招生官和HR眼前一亮,绝对的申请利器!同时亲身参与一场Kaggle竞赛,也将收获知识从书本走向实际应用的宝贵经验,绝对是一个含金量满满的科研经历。【戳下面的蓝字即可跳转到视频教程】

大神勿进!这是一套kaggle入门进阶教程,十大最适合新手经典实战案例,基础算法+代码剖析,通俗易懂!学完金牌拿到手软!机器学习|深度学习|pytorch

Kaggle竞赛详情

基本信息

  • 参赛时间:全年滚动,随时可以报名

  • 官网:https://www.kaggle.com/competitions

  • 比赛时间:全年线上,根据参与的项目决定

  • 参与形式:3-5人组队参赛或1v1定制

  • 适合学生:Kaggle适合有一定编程或微积分、线性代数基础,同时对现实问题有浓厚兴趣,并擅长运用所学知识去解决这些问题的学生

竞赛类型

Kaggle平台挑战多样,如高奖金的“Featured”竞赛和平易近人的“Research”等,均遵循相同模式,利用训练集建模,再通过测试集评估结果以决胜负。竞赛页面会显示时间、队伍数、奖金,并实时更新排名。在截止前,队伍可自由参与或改进方案,排名持续变动,胜负难料。此外,Kaggle允许用户建立个人档案,展示参与项目、活跃度、实时及历史排名,既具成就感,又可作为求职或申请的凭证。不过Kaggle赛事各难度等级也不一样:

Kaggle竞赛主要根据参赛者的需求和竞赛的目标进行分类,包括以下几种类型:

竞赛要求

  • 编程语言最基础的入门学者也需要学会初步使用一门编程语言。对于毫无基础的新手,推荐使用Python,因为Python作为一种强大的胶水语言,可迅速入门。

  • 探索数据光有编程语言是不够的,还需要学习如何探索性分析你手上的数据,这是进入数据科学的第一步。因为通常到手的数据都多到不可思议,你要学会取舍和迅速获取最有用的信息。

  • 模型训练熟悉使用机器学习库,培养良好的习惯,为之后的工作做铺垫实战,从初级可以逐渐增加难度。

竞赛流程

  • 注册账号(一人只能有一个账号)

  • 选择想要参赛的项目

  • 下载题目的数据

  • 时间截止,评出最优者

  • 获奖的队伍必须提交源代码

参加Kaggle竞赛的门槛

掌握数据科学基础知识

 统计学:理解基本概念如均值、方差、协方差、相关性等,这些是数据分析的基石。

概率论:学习概率分布、条件概率、贝叶斯定理等,有助于构建更准确的预测模型。

掌握基本编程技能

Python:因其简洁易学的语法和强大的数据处理能力,成为Kaggle竞赛中最受欢迎的编程语言。初学者可以从学习Python的基本语法开始,逐步掌握Pandas、NumPy等数据科学库。

Git:学会使用版本控制系统Git来管理你的代码,这对于团队协作和项目管理至关重要。

掌握机器学习算法

监督学习:了解线性回归、逻辑回归、决策树、随机森林、支持向量机等常见算法,并知道如何应用它们解决分类和回归问题。

无监督学习:学习聚类分析、主成分分析等方法,用于探索数据内在结构和模式。

深度学习

神经网络:理解神经网络的基本原理和结构,特别是卷积神经网络(CNN)和循环神经网络(RNN),它们在图像识别、自然语言处理等领域有着广泛应用。

框架选择:掌握TensorFlow或PyTorch等深度学习框架的使用,它们为模型构建、训练和优化提供了强大支持。

【戳下面的蓝字即可跳转到视频教程】

大神勿进!这是一套kaggle入门进阶教程,十大最适合新手经典实战案例,基础算法+代码剖析,通俗易懂!学完金牌拿到手软!机器学习|深度学习|pytorch

Kaggle竞赛入门指南

注册账号

首先,学生需要在kaggle网站上注册一个Kaggle账号,并完善个人资料。

建议上传真实头像,这样可以增加互动交流中的亲和力。完善个人简介,突出自己在数据科学领域的专长与兴趣。

选择要参加的竞赛 

新用户可以从参与平台上的各类机器学习竞赛开始。可以迅速熟悉平台操作,了解别人设计的解决方案。

点击进入competitions,从competitions里选择合适自己的竞赛项目。建议从一些参与人数较多、数据集较简单的竞赛开始,逐步掌握诀窍。

提交代码

Kaggle竞赛结束后,自己需要提交代码。查看排名靠前的代码,可以学习他们设计模型、特征工程的思路,借鉴改进自己的技能。

 统计数据

除了竞赛,Kaggle还提供了数据集的下载和分享功能,用户可以浏览和下载公开的数据集,或者分享自己的数据集供其他用户使用。

在datasets列出了非常多各式各样的统计数据,我们可以按照需要查询需要的数据。

交流互动 

在使用Kaggle的过程中,用户可以与其他数据科学家和机器学习专家进行交流和合作,分享经验、讨论问题,并从他人的经验中学习和提高自己的能力。

Kaggle竞赛比赛形式

Simple Competitions

遵循标准 Kaggle 格式的比赛。在简单的比赛中,用户在接受比赛规则后,可以在比赛开始时访问完整的数据集。作为竞争对手,您将下载数据,在本地或笔记本中构建模型,生成预测文件,然后将您的预测作为提交上传到 Kaggle。到目前为止,Kaggle 上的大多数比赛都遵循这种格式。

Two-stage

分为第一阶段和第二阶段,第二阶段建立在团队在第 1 阶段取得的成绩的基础上。第 2 阶段涉及在阶段开始时发布的新测试数据集。第 2 阶段的资格通常需要在第 1 阶段提交。在两个阶段的比赛中,阅读和理解比赛的具体规则和时间表尤为重要。

Code Competitions

在这些比赛中,所有提交都是在 Kaggle 笔记本内部提交的,并且无法直接将提交上传到比赛。

这些比赛有两个吸引人的特点。竞争更加平衡,因为所有用户都有相同的硬件限额。获胜模型往往比其他比赛中的获胜模型简单得多,因为它们必须在平台施加的计算限制内运行。对您可以提交的笔记本配置了自己独特的约束。这些可能受到以下特征的限制:CPU 或 GPU 运行时、使用外部数据的能力以及对 Internet 的访问。要了解您必须遵守的限制,请查看该特定比赛的要求。

奖项设置

kaggle的评价体系 kaggle的用户评价体系是基于三个维度的:学术活动、代码以及社区参与。三个维度把kaggle的用户分成了5个等级。

  • Novice :初始等级,只要注册就算Contributor :添加资料信息,并且进行了各种指定的动作即可。如上两个等级没有考虑到用户的比赛成绩和社区声望。

  • Expert :获得两枚学术活动铜牌;5枚代码铜牌;以及50枚讨论铜牌Master :获得一枚学术活动金牌,两枚学术活动银牌;10枚代码银牌;50枚讨论银牌以及总共200枚讨论奖牌

  • Grandmaster :获得5枚学术活动金牌,solo学术活动金牌;15枚代码金牌;50枚讨论金牌以及总共500枚讨论奖牌。

Kaggle竞赛推荐项目

Kaggle 比赛项目丰富多元,其中有趣且高含金量的的数据集更是不少。下面就来看看回归分析、分类分析、时间序列、深度学习、NLP 这五个方面有哪些极具代表性的数据集。

泰坦尼克号:灾难中的机器学习

此数据集基于泰坦尼克号沉船事件,提供了船上乘客的信息,包括年龄、性别、舱位等级、是否有亲属同行等,目标是根据这些信息预测乘客是否在沉船事故中幸存。

这是一个广为人知的分类分析数据集,参赛者需要从众多特征中找出与生存结果相关的因素,运用分类算法构建模型,判断乘客的生存情况,能够很好地帮助理解和实践分类问题的解决方法。这个题目需要参赛人把里面的重要因素挑选出来,并深入研究哪些因素会真正影响一个人的存活率,本质上是一个非常典型的统计学问题。

房价:高级回归技术

该数据集包含了爱荷华州埃姆斯市 2006 年至 2010 年期间的房屋销售信息,共涉及 79 个解释变量,描述了房屋的各种特征,如房屋面积、房间数量、建筑年份、周边环境等,目标是预测房屋的销售价格。

这个题目需要你通过经验去预测哪些因素会影响住房的成交及成交价格,同时通过匹配因素,比如某套房子与哪些房子类型相似,来预测这间房子的最终成交价格。这也是一个非常典型的统计学与CS匹配相结合的问题。

图片

店铺商品需求预测挑战 

该数据集包含了某连锁店铺中不同商品在一段时间内的销售数据,包括日期、店铺编号、商品编号、销售数量等信息。参赛者需要根据历史销售数据,预测未来一段时间内商品的需求量。

时间序列数据具有时间上的先后顺序和趋势性、周期性等特点,这个数据集可以让参赛者深入了解时间序列分析的方法和技巧,如 ARIMA、 Prophet 等模型的应用,对于学习和实践时间序列预测非常有帮助。

图片

狗与猫

这是一个图像分类数据集,包含了大量的狗和猫的图片,要求参赛者使用深度学习技术,如卷积神经网络(CNN),来构建模型对图片进行分类,判断是狗还是猫。

该数据集是深度学习在图像分类领域的经典案例,通过处理图像数据,参赛者可以深入了解深度学习模型的构建、训练和优化过程,以及如何处理大规模的图像数据,对于掌握深度学习在计算机视觉方面的应用具有重要意义。

图片

 推特情感分析

数据集包含了从推特上收集的大量推文,每条推文都标注了相应的情感极性(如积极、消极、中性)。参赛者需要运用自然语言处理技术,如文本预处理(分词、去除停用词等)、词向量表示(如 Word2Vec、BERT 等)、机器学习或深度学习模型(如循环神经网络 RNN、Transformer 等),来分析推文的情感倾向。

这个数据集能够让参赛者深入了解 NLP 在文本情感分析方面的应用,包括如何处理文本数据、提取特征以及构建有效的模型来理解和分析自然语言中的情感信息。

图片

Kaggle经历如何用到申请中?

掌握编程语言等技能可打基础

掌握编程语言等基本技能,不仅能够为参加Kaggle竞赛奠定基础,还能为未来参与其他计算机科学相关的科研活动和独立项目提供有力的支持。

作品展示与文书素材

Kaggle竞赛的一大亮点在于其命题的创新性与发散性,既为参赛者提供了明确的切入点,又给予了广阔的发挥空间。因此,无论竞赛结果如何,你所解决的问题及其相关产出,都可以作为作品进行展示,或作为文书撰写的宝贵素材。

实力证明与申请加分

Kaggle竞赛能够全面展现参赛者的综合能力。如果你能在竞赛中表现出色,将作品主页展示给学校,无疑会成为申请时的强大加分项,极大地提升你的竞争力。

Kaggle竞赛含金量

受众广且含金量高

种类繁多、不受年龄、背景和国籍限制,入门门槛低且赛事全年持续进行,Kaggle竞赛凭借其诸多优势一直备受青睐。此外,它还在升学深造、积累经验和提升个人价值等方面具有显著帮助。

优化简历,提升职业竞争力

对于尚未毕业的学生或正在规划求职的人士而言,参加Kaggle竞赛意味着完成一个完整的项目。由于Kaggle上的比赛通常需要运用前沿技术,因此也吸引了众多优秀企业的关注。拥有Kaggle比赛项目的经验,无疑能为简历增添亮点,成为后续实习或就业的有力敲门砖。

加分申请,助力留学深造

若你有留学顶尖院校的打算,参加Kaggle竞赛将是一个明智的选择。它能为你的申请增添光彩,成为申请过程中的加分项。对于文科生想要转码解决就业问题的人来说,Kaggle竞赛同样是一个不错的选择。在比赛中获得奖牌将大大提升你的就业竞争力,让你在求职市场上更加自信。

发表文章,掌握前沿技术

对于需要发表文章的人士来说,Kaggle竞赛同样提供了宝贵的机会。通过参与比赛,你可以了解并掌握前沿技术和算法,同时利用比赛数据作为论文的基础数据,经过优化后即可发表文章。

 Kaggle竞赛书籍推荐

《The Kaggle Book》

这本书是由Kaggle出版的竞赛书籍,本书不仅涵盖了Kaggle特定的技巧,还涵盖了针对各种数据类型的技巧,包括图像、表格数据、文本和强化学习。它将教读者如何设计有效的验证方案,并处理不同的评估指标。无论读者的目标是在Kaggle排名上升,提高数据科学技能,还是提高模型准确性,本书都是非常有效的参考资源。

《Python机器学习及实践

《Python机器学习及实践—从零开始通往Kaggle竞赛之路作者通过理论与实践相结合的方式,全面介绍了Python机器学习的核心知识和技能,包括常用库和工具、常见算法、过拟合与欠拟合处理、特征选择与降维等。无论初学者还是进阶开发者,阅读此书均可受益。这本书主要是针对想要进入机器学习领域并且希望参与Kaggle比赛的初学者。

《Approachingalmost-master》

它的作者Abhishek Thakur可不得了——世界上第一位kaggle四重大师!在比赛、数据集、笔记本、讨论四项排名中皆名列前茅。书籍内容从最基本的环境配置开始,逐步深入至模型方法,涉及了你在学习和工作中会遇到的几乎所有的代码问题。

【戳下面的蓝字即可跳转到视频教程】大神勿进!这是一套kaggle入门进阶教程,十大最适合新手经典实战案例,基础算法+代码剖析,通俗易懂!学完金牌拿到手软!机器学习|深度学习|pytorch_哔哩哔哩_bilibili

Kaggle竞赛常见问题

1、参赛者背景如何?

  • 从比赛目标出发,参赛者主要分为2种:

  • ① 一种是以奖金和排名为目的,包括靠奖金为生的职业Kaggler;

  • ② 另外一种就是以提升相关skills和背景为目的业余爱好者甚至在校学生了。从背景来看,前者的来源主要有丰富data science、data mining、machine learning工作经验的业内人士,或者是实力强劲的民间“技术宅”;而后者则往往是一些有一定技术能力,但经验欠缺,从中进行学习和锻炼的“长江后浪”。

2、在比赛中获胜或者拿到好的排名难吗?

  • 在Kaggle比赛中,赢得一个奖项甚至赢得一个好位置的难度非常高,通常有数千人参与一个项目,只有Top1才能获得奖金,可以说是高手中的高手。

  • 一般来说,几个人在行业内有一定水平在临时组团的情况下最多能拿到20个左右的排名成绩,排名还想要往前走就需要有一定的默契和合作经验。

3.我在哪里可以获得我的比赛数据集?

  • 我们建议您使用自己的数据,因为通常最好使用参与者无法访问的数据(以尽量减少作弊的诱惑)。

  • 但是,如果你不介意参与者完全可以访问它(例如纯粹的教育竞赛),可以考虑浏览Kaggle的数据集平台。它拥有数千个公共数据集,并拥有丰富的搜索和过滤工具,可以帮助您找到适合您需求的内容。每个数据集都应该包含一个数据使用许可,这将表明您是否可以将其用于您的竞争。

4.我收到(一个错误),我该如何解决?

  • 从阅读本安装指南开始。如果你仍然不能解决这个问题,试着在Kaggle论坛上询问其他社区竞赛的主持人。

5.我想再次参加同样的比赛。我需要从头开始吗?

  • 现在,你还不能复制过去的比赛。您需要从头开始安装。

6.谁能看到我的比赛?

  • 这取决于您选择的隐私设置。Kaggle有2个隐私设置-公共和有限。公开意味着你的竞争对手会在kaggle.com上被列出和发现。有限的意思是只有提供URL的人才可以观看和参加比赛。

7.我在哪里可以找到邀请链接?

  • 如果你选择了“公开”,你可以在你的浏览器标签上分享你的比赛——任何人都可以看到比赛。如果您的比赛设置为有限隐私,请访问您的比赛>主机>隐私>共享URL(如果您选择了有限)。

8.Kaggle禁止作弊

  • 在Kaggle上,作弊是不会被轻视的。我们会在比赛期间监控我们的合规账户(举报作弊者或因作弊行为提起移除请求的正式渠道)。我们还会在每场比赛结束时花大量时间审查可疑活动,并将违反规则的人从排行榜上删除。当我们认为我们有足够的证据时,我们会通过删除甚至可能封禁帐户来采取行动。

  • 我们还会在一周内监控和调查审核报告(抄袭、投票圈等),并采取适当的行动,包括移除奖牌和完全屏蔽账户。

  • 如果您认为您有证据表明某个队伍违反了竞赛规则,请将其报告给竞赛合规账户,以便进行彻底调查。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值