阅读了范伟,王贵文,刘发发的文章《GPS卫星轨道计算方法的研究》,将其中关于卫星真近点角、平近点角与偏近点角之间的计算步骤整理如下。
本文图片来源为参考文献截图。
目录
0.概念
轨道根数:6个用于确定轨道位置及卫星位置的参数
卫星过近地点时刻:字面含义
真近点角:观测时刻t卫星和地球连线与近地点形成的夹角
平近点角M:假设卫星以平均角速度在圆轨道上运行(该圆轨道与椭圆轨道共中心,轨道半径等于椭圆轨道长半轴长度),观测时刻t该虚拟卫星和地球连线与近地点形成的夹角
偏近点角E:如图所示,过观测时刻t卫星所在位置P作长半轴垂线,交点为R,延长RP与圆轨道相交于点Q,Q点和圆心连线与近地点形成的夹角
图1 GPS卫星轨道平面图
1.卫星向径r与偏近点角E的关系
如上图,以地球所在位置为原点O建立直角坐标系。
设观测时刻卫星的坐标为P(x,y),容易知道:
(1)
(2)
因此向径: (3)
2.卫星向径r与真近点角θ的关系
由图1容易看到 (4)
由(3)式知 ,代入(4)得:
(5)
3.计算平近点角M
根据平近点角的定义容易知道
(6)
其中: 为星历参考时刻,由广播星历给出;
为参考时刻的近点角;
为观测时刻的平均角速度,由卫星的平均角速度经摄动改正计算得出。
4.通过平近点角M计算偏近点角E
根据开普勒定律,卫星矢径单位时间内扫过的面积恒定,即:
(7)
其中 为卫星矢径在
时间内扫过的面积,下面计算
:
当卫星转过一个微小角度 时,矢径扫过的面积为
(8)
将 对应的观测时刻记为
,那么
至
时刻卫星扫过的面积为:
(9)
对应的 (10)
将(5)式代入(9)中,并记 ,可得:
(11)
结合(7)式,有:
(12)
下面计算(12)式中的积分:
由式(3)(5)知:
(13)
式(13)两端求微分,整理后得:
(14)
由(2)式,,从图1可以看到,
结合(3)式,(14)式可化为:
(15)
将(15)代入(12)式,则:
(16)
而:
(17)
将(17)代入(16),有:
(18)
根据平近点角的定义,易知:
,代入(18)可得:
(19)
5.根据偏近点角E计算真近点角θ
由(1)(2)可知:
(20)
于是: (21)
参考文献:
范伟, 王贵文, 刘发发. 2015. GPS卫星轨道位置计算方法的研究. 山西师范大学学报(自然科学版).