二体问题之5:开普勒方程

注:笔记,恳请批评指正。
需要得到时间和真近点角的关系。

1. 任意时间

对于轨道上任意两点时间差有
t − t 0 = k T p + ( t − t p ) + ( t p − t 0 ) t-t_{0}=k T_{p}+\left(t-t_{p}\right)+\left(t_{p}-t_{0}\right) tt0=kTp+(ttp)+(tpt0)
其中, T p T_{p} Tp表示周期时间,意在包含长短弧和多圈环绕的情况。 k k k为穿过近地点次数。 t p t_{p} tp表示其中一点为近地点。

2. 面积律常数

根据面积律定义,单位时间矢径扫过面积一定得
d A d t = A 1 t − t p = π a b T p = c \frac{d A}{d t}=\frac{A_{1}}{t-t p}=\frac{\pi a b}{T_{p}}=c dtdA=ttpA1=Tpπab=c
根据[[速度描述]]中的切向速率定义和与[[积分常数]]角动量积分的关系
r d θ d t = v u = h r r \frac{d \theta}{d t}=v u=\frac{h}{r} rdtdθ=vu=rh
带入扇形面积微分公式得
d A d t = 1 2 r r d θ d t = h 2 \frac{d A}{d t}=\frac{1}{2} r r \frac{d \theta}{d t}=\frac{h}{2} dtdA=21rrdtdθ=2h
c = h 2 c=\frac{h}{2} c=2h

3. 周期时间

d A dA dA常数带入周期时间相关的面积律定义
T p = π a b h 2 = 2 π a 2 1 − e 2 μ p = 2 π a 2 1 − e 2 μ a ( 1 − e 2 ) = 2 π a 3 μ \begin{aligned} T_{p}=\frac{\pi a b}{\frac{h}{2}} &=\frac{2 \pi a^{2} \sqrt{1-e^{2}}}{\sqrt{\mu p}} \\ &=\frac{2 \pi a^{2} \sqrt{1-e^{2}}}{\sqrt{\mu a\left(1-e^{2}\right)}} \\ &=2 \pi \sqrt{\frac{a^{3}}{\mu}} \end{aligned} Tp=2hπab=μp 2πa21e2 =μa(1e2) 2πa21e2 =2πμa3
可以得到平均角速度 n n n
n = 2 π T p = μ a 3 n=\frac{2 \pi}{T_{p}}=\sqrt{\frac{\mu}{a^{3}}} n=Tp2π=a3μ

4. 近地点时间

![[E.excalidraw.png]]

定义偏近点角 E E E,为椭圆位置x坐标对应的圆上一点与圆心连线形成的夹角。

求解矢径扫过的面积 A 1 A1 A1,并根据[[航天器轨道方程]]中圆与椭圆的关系 y e = b a y c y e=\frac{b}{a} y_{c} ye=abyc进行计算。
A 1 = A P S W − A 2 A P S W = b a A osv  = b a ( 1 2 a 2 E − 1 2 a 2 sin ⁡ E cos ⁡ t ) = a b 2 ( E − sin ⁡ E cos ⁡ E ) A 2 = 1 2 ( a e − a cos ⁡ E ) ( b a a sin ⁡ E ) = a b 2 ( e sin ⁡ E − sin ⁡ E cos ⁡ E ) \begin{aligned} &A_{1}=A_{PSW}-A_{2}\\ &A_{PSW}=\frac{b}{a} A_{\text {osv }}=\frac{b}{a}\left(\frac{1}{2} a^{2} E-\frac{1}{2} a^{2} \sin E \cos t\right)\\ &=\frac{a b}{2}(E-\sin E \cos E)\\ &A_{2}=\frac{1}{2}(a e-a \cos E)\left(\frac{b}{a} a \sin E\right)\\ &=\frac{a b}{2}(e \sin E-\sin E \cos E) \end{aligned} A1=APSWA2APSW=abAosv =ab(21a2E21a2sinEcost)=2ab(EsinEcosE)A2=21(aeacosE)(abasinE)=2ab(esinEsinEcosE)
得到
A 1 = A P S W − A 2 = a b 2 ( E − e sin ⁡ E ) \begin{aligned} &A_{1}=A_{PSW}-A_{2}\\ &=\frac{a b}{2}(E-e \sin E) \end{aligned} A1=APSWA2=2ab(EesinE)
带入面积律定义
A 1 t − t p = π a b T p a b 2 ( E − esin ⁡ E ) t − t p = π a b 2 π a 3 μ \begin{aligned} &\frac{A_{1}}{t-t p}=\frac{\pi a b}{T_{p}} \\ &\frac{\frac{a b}{2}(E-\operatorname{esin} E)}{t-t_{p}}=\frac{\pi a b}{2 \pi \sqrt{\frac{a^{3}}{\mu}}} \end{aligned} ttpA1=Tpπabttp2ab(EesinE)=2πμa3 πab
化简可得开普勒方程
t − t p = a 3 μ ( E − e sin ⁡ E ) = 1 n ( E − e sin ⁡ E ) \begin{aligned} t-t_{p} &=\sqrt{\frac{a^{3}}{\mu}}(E-e\operatorname{sin} E) \\ &=\frac{1}{n}(E-e\operatorname{sin} E) \end{aligned} ttp=μa3 (EesinE)=n1(EesinE)

5. 偏近点角与真近点角

O S OS OS为基准分别列写两角对应的表达式
a cos ⁡ E = a e + r cos ⁡ θ = a e + P 1 + e cos ⁡ θ cos ⁡ θ = a e + a e 2 cos ⁡ θ + a cos ⁡ θ − a e 2 cos ⁡ θ 1 + e cos ⁡ θ = a ( e + cos ⁡ θ ) 1 + e cos ⁡ θ \begin{aligned} a \cos E &=a e+r \cos \theta \\ &=a e+\frac{P}{1+e \cos \theta} \cos \theta \\ &=\frac{a e+a e^{2} \cos \theta+a \cos \theta-a e^{2} \cos \theta}{1+e \cos \theta} \\ &=\frac{a(e+\cos \theta)}{1+e \cos \theta} \end{aligned} acosE=ae+rcosθ=ae+1+ecosθPcosθ=1+ecosθae+ae2cosθ+acosθae2cosθ=1+ecosθa(e+cosθ)
最后得
cos ⁡ E = e + cos ⁡ θ 1 + e cos ⁡ θ \cos E =\frac{e+\cos \theta}{1+e \cos \theta} cosE=1+ecosθe+cosθ

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zeror_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值