MATLAB算法实战应用案例精讲-【大模型】LLM算法(最终篇)

目录

知识杂谈

1.transformer 八股文

2.attention计算方式以及参数量

3.NLU以及NLG各种任务的差异

4.tokenizer的细节,tokenizer的计算方式,各种tokenizer的优缺点

大模型算法

1.在指令微调中,如何设置、选择和优化不同的超参数,以及其对模型效果的影响?

2.在指令微调中,如何选择最佳的指令策略,以及其对模型效果的影响?

3.Lora的原理和存在的问题讲一下?

4.bf16,fp16半精度训练的优缺点

5.RLHF完整训练过程是什么?RL过程中涉及到几个模型?显存占用关系和SFT有什么区别?

评测

1.如果想全面的评测模型能力,有哪些维度以及数据集?

2.如何评测生成,改写等开放性任务?

3.zeroshot和Fewshot具体做法的区别?

算法原理 

大模型参数

1.1 模型参数单位

1.2 模型参数精度

推理显存计算

以 Llama-2-7b-hf 为例

训练显存计算

以 Llama-2-7b-hf 为例

 大模型微调样本构造的trick


 

知识杂谈

1.transformer 八股文

a.Self-Attention的表达式

b.为什么上面那个公式要对QK进行scaling

scaling后进行softmax操作可以使得输入的数据的分布变得更好,你可以想象下softmax的公式,数值会进入敏感区间,防止梯度消失,让模型能够更容易训练。

c.self-attention一定要这样表达吗?

不一定,只要可以建模相关性就可以。当然,最好是能够高速计算(矩阵乘法),并且表达能力强(query可以主动去关注到其他的key并在value上进行强化&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值