MATLAB算法实战应用案例精讲-【图像处理】机器视觉(基础篇)

目录

前言

几个高频面试题目

如何选择合适的面扫相机 

如何选择光学滤波器

知识储备

CCD(像素)与视觉系统的基础知识

镜头选择基础和视觉系统

图像传感器的典型应用

镜头的基础知识及选择方法

算法原理

机器视觉系统设计过程

机器视觉工业镜头计算方法 

一、机器视觉中工业镜头的计算方式

二、相机和镜头选择技巧

三、工业相机传感器尺寸大小:(单位:mm)

四、CCD相机元件的尺寸

五、线阵传感器尺寸(单位:mm)

六、公式:

七、显示器倍率及综合倍率的求法:

八、光学放大率

用于机器视觉应用的相机类型和接口

相机类型及其优势

模拟与数码相机

隔行与逐行扫描相机

面积扫描与线扫描相机

时间延迟和积分(TDI)与传统的线扫描相机

数码相机接口

FireWire(IEEE 1394 / IIDC DCAM标准)

CameraLink®

 GigE(GigE视觉标准)

 USB(通用串行总线)

给相机供电

以太网供电(PoE)

模拟CCD输出信号

笔记本电脑和相机

相机软件

分辨率与视野

相机和镜头选型-像素尺寸与景深

像素尺寸

景深

选型建议

机器视觉2D和3D技术

2D

3D

机器视觉最佳光源方案

应用场景

激光照明视觉系统用于空箱检测

机器视觉在纺织行业中的应用

机器视觉在汽车行业的应用

使用机器视觉进行精密测量

光学成像布面检测系统

机器视觉智能相机与机器人应用集成存在的挑战


前言

 机器视觉系统是综合现代计算机、光学、电子技术的高科技系统。机器视觉技术通过计算机对系统摄取的图像进行处理,分析其中的信息,并做出相应的判断,进而发出对设备的控制指令。机器视觉系统的具体应用需求千差万别,视觉系统本身也可能有多种不同的形式,但都包括以下过程:

  图像采集 利用光源照射被观察的物体或环境,通过光学成像系统采集图像,通过相机和图像采集卡将光学图像转换为数字图像,这是机器视觉系统的前端和信息来源。

  图像处理和分析 计算机通过图像处理软件对图像进行处理,分析获取其中的有用信息。如PCB板的图像中是否存在线路断路、纺织品的图像中是否存在疵点、文档图像中存在哪些文字等。这是整个机器视觉系统的核心。

  判断和控制 图像处理获得的信息最终用于对对象(被测物体、环境)的判断,并形成对应的控制指令,发送给相应的机构。如摄取的零件图像中,计算零件的尺寸是否与标准一致,不一致则发出报警,做出标记或进行剔除。

  在整个过程中,被测对象的信息反映为图像信息,进而经过分析,从中得到特征描述信息&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值