目标检测YOLO实战应用案例100讲-基于深度学习的跌倒检测

本文详细介绍了跌倒检测的研究现状,包括基于穿戴传感器、场景传感器和计算机视觉的方法。重点探讨了基于计算机视觉的跌倒检测,特别是利用深度学习中的卷积神经网络(CNN)和姿态估计方法。通过分析YOLOv7目标检测算法及其在跌倒检测中的应用,提出结合注意力机制改进YOLOv7,以提高检测性能。文章还涵盖了跌倒检测的相关理论基础,如卷积神经网络和姿态估计,并介绍了数据集的选择与自建数据集的情况,为后续研究奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

 国内外研究现状 

基于穿戴传感器的跌倒检测方法 

 基于场景传感器的跌倒检测方法 

 基于计算机视觉的跌倒检测方法 

2  跌倒检测的相关理论基础 

2.1  卷积神经网络相关理论 

2.2  姿态估计方法 

2.2.1  单人姿态估计 

2.2.2  多人姿态估计 

2.3  跌倒检测数据集 

2.3.1  公开数据集 

2.3.2  自建数据集 

3  基于YOLOv7目标检测算法的改进 

3.1  YOLOv7目标检测算法 

3.2  基于注意力机制的YOLOv7目标检测算法 

3.2.1  注意力机制 

3.2.2  融合注意力机制的YOLOv7算法 


本文篇幅较长,分为上下两篇,下篇详见基于深度学习的跌倒检测(续)

 

前言

随着深度学习的不断发展,人工智能技术越来越成熟,行为识别已经成为国 内外众多学者的研究领域。该领域主要研究如何让计算机分析与理解人体行为, 是人机交互、姿态估计、视频监控等场景中必不可少的关键技术,具有广阔的发 展前景。识别人体活动,比如行走、下蹲、坐下、躺下、跌倒等行为,能够有助 于计算机理解人体行为。跌倒检测是行为识别中具有重大意义的研究方向,是各 个年龄段和众多场景都存在的危险事件,尤其是老年人群的跌倒行为。 
跌倒检测在体育运动、特种作业、国防安全等领域也引起了广泛的研究关注。 在体育运动领域,跌倒可能导致运动员的严重伤害&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值