MATLAB算法实战应用案例精讲-【目标检测】YOLOV8(最终篇)

本文详细介绍了YOLOv8这一最新目标检测算法,包括其新特性、架构改进、准确度提升和实际应用案例。YOLOv8在YOLO系列的基础上实现了无锚检测、新卷积结构和结束镶嵌增强,提高了模型性能和效率。此外,文章还阐述了YOLOv8的训练方法、存储库和Python包的使用,以及如何在物体检测网络服务中应用YOLOv8。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

YOLOv8的新特性与可用模型

算法原理

YOLOv8是什么?

如何使用YOLOv8

YOLO是如何发展成为YOLOv8的?

YOLOv8架构

无锚检测

新的卷积

结束镶嵌增强

YOLOv8准确性改进

YOLOv8 COCO准确性

RF100准确性

YOLOv8存储库和PIP包

YOLOv8存储库布局

YOLOv8 CLI

YOLOv8 Python包

YOLOv8注释格式

YOLOv8标注工具

应用案例:Yolov8神经网络进行物体检测

如何训练一个YOLOv8模型

创建一个物体检测的网络服务

创建一个前端

创建一个后端


 

前言

YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

YOLO(You Only Look Once)是一种流行的对象检测和图像分割模型,由华盛顿大学的Joseph Redmon和Ali Farhadi开发。YOLO于2015年推出,以其高速度和高精度迅速走红。

  • YOLOv2于2016年发布,通过合并批处理规范化、锚盒和维度集群来改进原始模型

  • 2018年推出的YOLOv3使用更高效的骨干网络、多个锚点和空间金字塔池进一步增强了该模型的性能

  • YOLOv4于2020年发布,引入了Mosaic数据增强、新的无锚检测头和新的丢失功能等创新

  • YOLOv5进一步提高了模型的性能,并添加了超参数优化、集成实验跟踪和自动导出到流行导出格式等新功能

  • YOLOv6于2022年由美团开源,目前正在该公司的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值