一、数系的历史:从自然数到复数
由于计数的需要,人类从现实中抽象出了自然数 0、1、2、3、……。自然数是数学中一切"数"的起点。
然而,自然数对减法运算不封闭,当较小的自然数减去较大的自然数时,其结果不是自然数。为了增加对减法运算的封闭性,自然数被扩充到了整数。
但整数对除法运算也不封闭,一个整数不能被另一个整数整除。为了增加对除法运算的封闭性,整数被扩充到了有理数。
而有理数对于开方运算不封闭,有理数开正整数次方,其结果有的不是有理数。另一方面,有理数对于极限运算也不封闭。因此,为了增加对开方运算和极限运算的封闭性,有理数被扩充到了实数域的范围。这样,将定义在实数域上的函数进行极限、定积分、多重积分、无穷级数、无穷积等运算,只要不发散,其化简结果都在实数范围之内。
为了避免负数在实数范围内无法开偶数次方运算,实数被扩充到复数域。复数是包含实数的最小代数闭域,对任意复数进行四则运算、开方,其化简结果都是复数。
二、数系的包含关系
复数,实数,虚数,有理数,无理数,整数,分数,自然数,负整数,正整数,零等之间的关系如下:
三、结束语
1. 数系的发展历史参考了百度百科的资料。
2. 如果您有踊跃的发言和建议,请留言。