数系的发展

本文概述了数系发展的历史,从自然数的起源,到整数、有理数的扩展,以解决运算封闭性问题,最终揭示复数作为代数闭域的重要性。通过数系包含关系图,展示各个数类间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数系的历史:从自然数到复数

       由于计数的需要,人类从现实中抽象出了自然数 0、1、2、3、……。自然数是数学中一切"数"的起点。

       然而,自然数对减法运算不封闭,当较小的自然数减去较大的自然数时,其结果不是自然数。为了增加对减法运算的封闭性,自然数被扩充到了整数。

       但整数对除法运算也不封闭,一个整数不能被另一个整数整除。为了增加对除法运算的封闭性,整数被扩充到了有理数。

       而有理数对于开方运算不封闭,有理数开正整数次方,其结果有的不是有理数。另一方面,有理数对于极限运算也不封闭。因此,为了增加对开方运算和极限运算的封闭性,有理数被扩充到了实数域的范围。这样,将定义在实数域上的函数进行极限、定积分、多重积分、无穷级数、无穷积等运算,只要不发散,其化简结果都在实数范围之内。

       为了避免负数在实数范围内无法开偶数次方运算,实数被扩充到复数域。复数是包含实数的最小代数闭域,对任意复数进行四则运算、开方,其化简结果都是复数。

二、数系的包含关系

       复数,实数,虚数,有理数,无理数,整数,分数,自然数,负整数,正整数,零等之间的关系如下:

三、结束语

       1. 数系的发展历史参考了百度百科的资料。

       2. 如果您有踊跃的发言和建议,请留言。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞机火车巴雷特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值