第三章 2. 超复数数系,四元数,八元数,十六元数

本文介绍了超复数数系,包括四元数、八元数和十六元数的概念。四元数放弃了乘法交换律,广泛应用于刚体转动;八元数系不仅无交换律,亦无结合律;十六元数与Dirac代数相关,满足特定的乘法规则。这些高维数系在数学和物理学中有着重要应用。
摘要由CSDN通过智能技术生成

一、超复数数系

 

  从实数扩展到复数,实际上是从实数轴扩张到复平面,即从一元数扩展到二元数。那么我们能够扩展到更高维的空间哪?数学家给了我们答案,我们可以引进$2^{n}$元数。当$n=0,1$时,分别对应实数和复数。当$n=2,3,4$分别对应四元数(Hamilton代数),八元数(Cayley代数),以及十六元数(Clifford代数)。它们统称为超复数

  当$n\geq 1$时,我们就已经无法比较数的大小,即有序性消失。下面我们就$n=2,3,4$的情况分别讨论。

 

二、 四元数系$Q(R)$

 

  四元数系是第一个放弃乘法交换律的数系。它由四组基元定义。

  令$Q(R)=\{\alpha|\alpha=a+b\hat i+c\hat j+d\hat k,\,a,b,c,d\in\mathbb{R}\}$,用自然方式定义加法,以及元素与实数的数乘运算,而乘法规定为用分配律去展开,并且基元的乘法运算满足

  ${\hat i}^2={\hat j}^2={\hat k}^2=-1,\,\hat i\hat j=-\hat j\hat i=\hat k,\,\hat j\hat k=-\hat k\hat j=\hat i,\,\hat k\hat i=-\hat i\hat k=\hat j$.

  从基元的乘法可以看出,四元数的乘法是不对易的,因此$Q(R)$是一个非Abel域。注意准确地讲

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值