DY共轭梯度法的内在性质及其应用

DY 共轭梯度法的内在性质及其应用

1、介绍

2、DY 共轭梯度法的内在性质

3、DY 共轭梯度法在一般线搜索条件下的全局收敛性

4、结束语


1、介绍
   共轭梯度法是解决无约束优化问题的常用方法之一,问题如下
min ⁡ x ∈ R n f ( x ) (1) \min_{x\in\mathbb{R}^n} f(x)\tag{1} xRnminf(x)(1)
求解此问题,一般采取线搜索技巧,其基本迭代格式形如
x k + 1 = x k + α k d k (2) x_{k+1}=x_k+\alpha_k d_k\tag{2} xk+1=xk+αkdk(2)
d k = { − g k , k = 1 , − g k + β k d k , k ≥ 2 , (3) d_k=\begin{cases} -g_k,\quad & k=1,\\ -g_k+\beta_k d_k, &k\ge 2,\end{cases}\tag{3} dk={gk,gk+βkdk,k=1,k2,(3)
其中   g k   ~g_k~  gk 是迭代点   x k   ~x_k~  xk 处的梯度,   α k   ~\alpha_k~  αk 是搜素步长,   d k   ~d_k~  dk 是搜素方向,   β k   ~\beta_k~  βk 为共轭参数。
   不同的参数   β k   ~\beta_k~  βk 决定不同的共轭梯度法。在前一篇文章,我们主要介绍了由 戴彧虹袁亚湘 提出的 DY 共轭梯度法,其   β k   ~\beta_k~  βk 的参数形式如下
β k D Y = ∥ g k ∥ 2 d k − 1 ( g k − g k − 1 ) (4) \beta_k^{DY}=\frac{\Vert g_k\Vert^2}{d_{k-1}(g_k-g_{k-1})}\tag{4} βkDY=dk1(gkgk1)gk2(4)
表明了其它标准 Wolfe 线搜索下能够建立全局收敛性,进一步,如果在强 Wolfe 线搜索下能够保证其充分下降性。我们还讨论了如果函数   f ( x )   ~f(x)~  f(x) 为严格凸函数(一致凸函数),能够保证下降性(充分下降性)。
   在此,我想表明的是,通过以上对 DY 算法的认识还远远不够,我们应该更加深入讨论 DY 共轭梯度法的内在性质,这些性质并不依赖于线搜索的选择和函数的凸性。最后我们利用这些性质,构造出几种特殊的线搜索来建立全局收敛性。

2、DY 共轭梯度法的内在性质
   为了严谨,我们都是假定
g k ≠ 0 ,     ∀   k ≠ 1 (5) g_k\neq 0,~~~\forall ~k\neq 1\tag{5} gk=0,    k=1(5)
否则,稳定点我们已经得到,迭代算法就会终止。
   其次,我们定义两个后面会用到的两个量
q k = ∥ d k ∥ 2 ( g k T d k ) 2 (6) q_k=\frac{\Vert d_k\Vert^2}{(g_k^Td_k)^2}\tag{6} qk=(gkTdk)2dk2(6)
r k = − g k T d k ∥ g k ∥ 2 (7) r_k=-\frac{g_k^T d_k}{\Vert g_k\Vert^2}\tag{7} rk=gk2gkTdk(7)
其中   q k   ~q_k~  qk 可看成一个反映方向   d k   ~d_k~  dk 长度的量,   r k   ~r_k~  rk 则反映   d k   ~d_k~  dk 的下降程度。实际上,若   r k > 0   ~r_k>0~  rk>0 ,则   d k   ~d_k~  dk 是下降方向,若   r k ≥ c   ~r_k\ge c~  rkc 对某常数   c   ~c~  c 成立,则式   ( 7 )   ~(7)~  (7) 表明   d k   ~d_k~  dk 是下降方向。
   下面的这些东西,其实在上一篇文章的证明过程中也出现过,在此我们还是叙述一下
  k ≥ 2   ~k\ge 2~  k2 时,   d k = − g k + β k D Y d k − 1   ~d_k=-g_k+\beta_k^{DY}d_{k-1}~  dk=gk+βkDYdk1 ,两端与   g k   ~g_k~  gk 做内积。
g k T d k = − ∥ g k ∥ 2 + β k D Y g k T d k − 1 = ∥ g k ∥ 2 g k − 1 T d k − 1 d k − 1 T ( g k − g k − 1 ) = β k D Y g k − 1 T d k − 1 (8) g_k^T d_k=-\Vert g_k\Vert^2+\beta_k^{DY}g_k^T d_{k-1}=\Vert g_k\Vert^2\frac{g_{k-1}^T d_{k-1}}{d_{k-1}^T(g_k-g_{k-1})}=\beta_k^{DY}g_{k-1}^T d_{k-1}\tag{8} gkTdk=gk2+βkDYgkTdk1=gk2dk1T(gkgk1)gk1Tdk1=βkDYgk1Tdk1(8)
  k ≥ 2   ~k\ge 2~  k2 时,   d k + g k = β k d k − 1   ~d_k+g_k=\beta_k d_{k-1}~  dk+gk=βkdk1 ,两端取模平方并移项,可得
∥ d k ∥ 2 = β k 2 ∥ d k − 1 ∥ 2 − 2 g k T d k − ∥ g k ∥ 2 \Vert d_k\Vert^2=\beta_k^2\Vert d_{k-1}\Vert^2-2g_k^Td_k-\Vert g_k\Vert^2 dk2=βk2dk122gkTdkgk2
将上式除以   ( g k T d k ) 2   ~(g_k^T d_k)^2~  (gkTdk)2 ,并利用   ( 8 )   ~(8)~  (8) 
∥ d k ∥ 2 ( g k T d k ) 2 = ∥ d k − 1 ∥ 2 ( g k − 1 T d k − 1 ) − 2 g k T d k − ∥ g k ∥ 2 ( g k T d k ) 2 (9) \frac{\Vert d_k\Vert^2}{(g_k^T d_k)^2}=\frac{\Vert d_{k-1}\Vert^2}{(g_{k-1}^Td_{k-1})}-\frac{2}{g_k^T d_k}-\frac{\Vert g_k\Vert^2}{(g_k^T d_k)^2}\tag{9} (gkTdk)2dk2=(gk1Tdk1)dk12gkTdk2(gkTdk)2gk2(9)
利用   ( 6 )   ~(6)~  (6)    ( 7 )   ~(7)~  (7) 的定义,则有
q k = g k − 1 + 1 ∥ g k ∥ 2 2 r k − 1 ∥ g k ∥ 2 1 r k 2 (10) q_{k}=g_{k-1}+\frac{1}{\Vert g_k\Vert^2}\frac{2}{r_k}-\frac{1}{\Vert g_k\Vert^2}\frac{1}{r_k^2}\tag{10} qk=gk1+gk21rk2gk21rk21(10)
因此若   r k > 0   ~r_k>0~  rk>0 ,则式   ( 10 )   ~(10)~  (10) 式右端的第二项将使   q k − 1   ~q_{k-1}~  qk1 增加,第三项将使得   q k − 1   ~q_{k-1}~  qk1 的值减小,它们关于   1 r k   ~\frac{1}{r_k}~  rk1 的量级分别为一阶和二阶。同时考虑这两项,不难看出当且仅当   r k ≥ 1 2   ~r_k\ge\frac{1}{2}~  rk21 时,   q k − 1   ~q_{k-1}~  qk1 增加;而当   r k   ~r_k~  rk 趋于零时,   q k − 1   ~q_{k-1}~  qk1 将显著减少。由于对所有的   k ≥ 1   ~k\ge 1~  k1 ,都有   q k ≥ 0   ~q_k\ge 0~  qk0 ,我们便可以对   r k   ~r_k~  rk 的下界进行估计。
   我们先给出如下假定,存在正常数   γ   ~\gamma~  γ    γ ˉ   ~\bar{\gamma}~  γˉ 使得
γ ≤ ∥ g k ∥ ≤ γ ˉ ,     ∀   k ≥ 1. (11) \gamma\le\Vert g_k\Vert\le\bar{\gamma},~~~\forall~ k\ge 1.\tag{11} γgkγˉ,    k1.(11)

定理1: 考虑方法   ( 2 )   ~(2)~  (2)    ( 3 )   ~(3)~  (3) ,其中   β k   ~\beta_k~  βk    ( 4 )   ~(4)~  (4) 计算,   d k   ~d_k~  dk 满足   g k T d k < 0   ~g_k^T d_k<0~  gkTdk<0 。若   ( 11 )   ~(11)~  (11) 成立,则存在常数   δ 1   ~\delta_1~  δ1    δ 2   ~\delta_2~  δ2    δ 3   ~\delta_3~  δ3 ,使得下述关系式
− g k T d k ≥ δ 1 k (12) -g_k^T d_k\ge\frac{\delta_1}{\sqrt{k}}\tag{12} gkTdkk δ1(12)
∥ d k ∥ 2 ≥ δ 2 k (13) \Vert d_k\Vert^2\ge\frac{\delta_2}{k}\tag{13} dk2kδ2(13)
r k ≥ δ 3 k (14) r_k\ge\frac{\delta_3}{\sqrt{k}}\tag{14} rkk δ3(14)
对所有   k ≥ 1   ~k\ge 1~  k1  都成立.

证明: 利用   r 1 = 1   ~r_1=1~  r1=1 ,对   ( 10 )   ~(10)~  (10) 式求和,得
q k = ∑ i = 1 k 1 ∥ g i ∥ 2 ( 2 r i − 1 r i 2 ) (15) q_k=\sum_{i=1}^k\frac{1}{\Vert g_i\Vert^2}(\frac{2}{r_i}-\frac{1}{r_i^2})\tag{15} qk=i=1kgi21(ri2ri21)(15)
因为   q k ≥ 0   ~q_k\ge 0~  qk0 ,上式表明
1 ∥ g k ∥ 2 ( − 2 r k + 1 r k 2 ) ≤ ∑ i = 1 k − 1 1 ∥ g i ∥ 2 ( 2 r i − 1 r i 2 ) (16) \frac{1}{\Vert g_k\Vert^2}(-\frac{2}{r_k}+\frac{1}{r_k^2})\le\sum_{i=1}^{k-1}\frac{1}{\Vert g_i\Vert^2}(\frac{2}{r_i}-\frac{1}{r_i^2})\tag{16} gk21(rk2+rk21)i=1k1gi21(ri2ri21)(16)
利用   ( 11 )   ~(11)~  (11)    ( 16 )   ~(16)~  (16) 及关系
2 r i − 1 r i 2 ≤ 1 (17) \frac{2}{r_i}-\frac{1}{r_i^2}\le 1\tag{17} ri2ri211(17)
即得
1 r k 2 − 2 r k − γ 2 ˉ γ 2 ( k − 1 ) ≤ 0 (18) \frac{1}{r_k^2}-\frac{2}{r_k}-\frac{\bar{\gamma^2}}{\gamma^2}(k-1)\le 0\tag{18} rk21rk2γ2γ2ˉ(k1)0(18)
从上式及   r k > 0   ~r_k>0~  rk>0 ,不难证得
1 r k ≤ 1 + 1 + γ ˉ 2 γ 2 ( k − 1 ) ≤ 1 + γ ˉ γ k ≤ 2 γ ˉ γ k (19) \frac{1}{r_k}\le 1+\sqrt{1+\frac{\bar{\gamma}^2}{\gamma^2}(k-1)}\le1+\frac{\bar{\gamma}}{\gamma}\sqrt{k}\le\frac{2\bar{\gamma}}{\gamma}\sqrt{k}\tag{19} rk11+1+γ2γˉ2(k1) 1+γγˉk γ2γˉk (19)
因此对   ( 14 )   ~(14)~  (14)    δ 3 = γ 2 γ ˉ   ~\delta_3=\frac{\gamma}{2\bar{\gamma}}~  δ3=2γˉγ ,注意到
− g k T d k = ∥ g k ∥ 2 r k (20) -g_k^T d_k=\Vert g_k\Vert^2r_k\tag{20} gkTdk=gk2rk(20)
以及
∥ d k ∥ ≥ ∥ g k ∥ r k (21) \Vert d_k\Vert\ge\Vert g_k\Vert r_k\tag{21} dkgkrk(21)
即对关系式   ( 13 )   ~(13)~  (13)    ( 14 )   ~(14)~  (14) 中的   δ 1 = δ 3 γ 2   ~\delta_1=\delta_3\gamma^2~  δ1=δ3γ2    δ 2 = δ 3 2 γ 2   ~\delta_2=\delta_3^2\gamma^2~  δ2=δ32γ2 也成立。

注1
在上面的定理中,关系式   ( 14 )   ~(14)~  (14) 并不表明充分下降在每一步都成立。虽然如此,我们可以证明 DY 共轭梯度法的充分下降性质对大部分点列都成立。

定理 2: 考虑方法   ( 2 )   ~(2)~  (2)    ( 3 )   ~(3)~  (3) ,其中   β k   ~\beta_k~  βk    ( 4 )   ~(4)~  (4) 计算,   d k   ~d_k~  dk 满足   g k T d k < 0   ~g_k^T d_k<0~  gkTdk<0 ,若   ( 11 )   ~(11)~  (11) 成立,则对任意的   p ∈ ( 0 , 1 )   ~p\in(0,1)~  p(0,1) ,存在正常数   δ 4   ~\delta_4~  δ4    δ 5   ~\delta_5~  δ5    δ 6   ~\delta_6~  δ6 ,使得对所有的   k ≥ 1   ~k\ge 1~  k1 ,关系式
− g i T d i ≥ δ 4 (22) -g_i^T d_i\ge \delta_4\tag{22} giTdiδ4(22)
∥ d i ∥ 2 ≥ δ 5 (23) \Vert d_i\Vert^2\ge\delta_5\tag{23} di2δ5(23)
以及
r i ≥ δ 6 (24) r_i\ge\delta_6\tag{24} riδ6(24)
  [ 1 , k ]   ~[1,k]~  [1,k] 中至少   [ p k ]   ~[pk]~  [pk]    i   ~i~  i 成立

证明: 对任意的   p ∈ ( 0 , 1 )   ~p\in (0,1)~  p(0,1) ,我们选取   δ 6 > 0   ~\delta_6>0~  δ6>0 ,使其满足
δ ′ ≜ 1 δ 6 2 − 2 δ 6 γ ≥ γ 2 ˉ p γ 2 ( 1 − p ) (25) \delta^{'}\triangleq\frac{1}{\delta_6^2}-\frac{2}{\delta_6\gamma}\ge\frac{\bar{\gamma^2}p}{\gamma^2(1-p)}\tag{25} δδ621δ6γ2γ2(1p)γ2ˉp(25)
对此   δ 6   ~\delta_6~  δ6 和任意的   k   ~k~  k ,定义集合
I k = { i ∈ [ 1 , k ] : r i ≥ δ 6 } (26) I_k=\left\{i\in[1,k]:r_i\ge\delta_6\right\}\tag{26} Ik={i[1,k]:riδ6}(26)
并记   ∣ I k ∣   ~\vert I_k\vert~  Ik    I k   ~I_k~  Ik 中元素的个数,利用   ( 10 )   ~(10)~  (10)    ( 11 )   ~(11)~  (11) 以及   q k ≥ 0   ~q_k\ge 0~  qk0 ,不难看出
∑ i ∈ [ 1 , k ] \ I k ( − 2 r i + 1 r i 2 ) ≤ γ ˉ 2 γ 2 ∑ i ∈ I k ( 2 r i − 1 r i 2 ) (27) \sum_{i\in [1,k]\backslash I_k}(-\frac{2}{r_i}+\frac{1}{r_i^2})\le\frac{\bar{\gamma}^2}{\gamma^2}\sum_{i\in I_k}(\frac{2}{r_i}-\frac{1}{r_i^2})\tag{27} i[1,k]\Ik(ri2+ri21)γ2γˉ2iIk(ri2ri21)(27)
于是,由   ( 17 )   ~(17)~  (17)    ( 27 )   ~(27)~  (27) 以及   I k   ~I_k~  Ik 的定义可得
δ ′ ( k − ∣ I k ∣ ) ≤ γ ˉ 2 γ 2 ∣ I k ∣ (28) \delta^{'}(k-\vert I_k\vert)\le\frac{\bar{\gamma}^2}{\gamma^2}\vert I_k\vert\tag{28} δ(kIk)γ2γˉ2Ik(28)
其中   δ ′   ~\delta^{'}~  δ    ( 25 )   ~(25)~  (25) 给出,上式和   ( 25 )   ~(25)~  (25) 表明了
∣ I k ∣ ≥ δ ′ γ 2 δ ′ γ 2 + γ ˉ 2 k ≥ p k ≥ [ p k ] (29) \vert I_k\vert\ge\frac{\delta^{'}\gamma^2}{\delta^{'}\gamma^2+\bar{\gamma}^2}k\ge p k\ge [pk]\tag{29} Ikδγ2+γˉ2δγ2kpk[pk](29)
故对任意的   p ∈ ( 0 , 1 )   ~p\in (0,1)~  p(0,1) ,如果选取   δ 6 > 0   ~\delta_6>0~  δ6>0 满足   ( 25 )   ~(25)~  (25)    δ 4 = δ 6 γ 2   ~\delta_4=\delta_6\gamma^2~  δ4=δ6γ2    δ 5 = δ 6 2 γ 2   ~\delta_5=\delta_6^2\gamma^2~  δ5=δ62γ2 ,则从   ( 11 )   ~(11)~  (11)    ( 20 )   ~(20)~  (20)    ( 21 )   ~(21)~  (21)    ( 29 )   ~(29)~  (29) 知,关系式   ( 22 ) − ( 24 )   ~(22)-(24)~  (22)(24) 至少对   [ p k ]   ~[pk]~  [pk]    i   ~i~  i 都成立。

注2:上述证明证明过程,本人看了很久,奈何水平有限,感觉理解不了。比如式   ( 25 )   ~(25)~  (25) 的定义,   ( 27 )   ~(27)~  (27)    ( 28 )   ~(28)~  (28) 的推导,就不明白,如果有人了解,还望不吝赐教。


3、DY 共轭梯度法在一般线搜索条件下的全局收敛性

现在设线搜索满足如下较为一般的条件
f k − f k + 1 ≥ c min ⁡ { − g k T d k , ∥ d k ∥ 2 , q k − 1 } (30) f_k-f_{k+1}\ge c\min\left\{-g_k^T d_k,\Vert d_k\Vert^2,q_k^{-1}\right\}\tag{30} fkfk+1cmin{gkTdk,dk2,qk1}(30)
其中   c > 0   ~c>0~  c>0 为常数,而   q k   ~q_k~  qk    ( 6 )   ~(6)~  (6) 式给出。因为对标准 Wolfe 线搜索可证明
f k − f k + 1 ≥ c q k − 1 (31) f_k-f_{k+1}\ge cq_k^{-1}\tag{31} fkfk+1cqk1(31)
对标准 Armijo 线搜索 ,   α k = max ⁡ { λ m : m ≥ 0 , m ∈ N }   ~\alpha_k=\max \left\{\lambda^m:m\ge 0,m\in\mathbb{N}\right\}~  αk=max{λm:m0,mN} 满足下式
f ( x k + α k d k ) − f ( x k ) ≤ σ α k g k T d k f(x_k+\alpha_k d_k)-f(x_k)\le\sigma\alpha_k g_k^Td_k f(xk+αkdk)f(xk)σαkgkTdk
则有下式成立
f k − f k + 1 ≥ c { − g k T d k , q k − 1 } (32) f_k-f_{k+1}\ge c\left\{-g_k^Td_k,q_k^{-1}\right\}\tag{32} fkfk+1c{gkTdk,qk1}(32)
对另一种 Armijo 型 线搜索,   α k = max ⁡ { λ m : m ≥ 0 , m ∈ N }   ~\alpha_k=\max \left\{\lambda^m:m\ge 0,m\in\mathbb{N}\right\}~  αk=max{λm:m0,mN} 满足下式
f ( x k + α k d k ) − f ( x k ) ≤ − δ α k 2 g k T d k f(x_k+\alpha_k d_k)-f(x_k)\le-\delta\alpha_k^2 g_k^Td_k f(xk+αkdk)f(xk)δαk2gkTdk
则有下式成立
f k − f k + 1 ≥ c min ⁡ { ∥ d k ∥ 2 , q k − 1 } (33) f_k-f_{k+1}\ge c\min\left\{\Vert d_k\Vert^2,q_k^{-1}\right\}\tag{33} fkfk+1cmin{dk2,qk1}(33)
其上:   λ , σ ∈ ( 0 , 1 ) , δ > 0   ~\lambda,\sigma\in(0,1),\delta>0~  λ,σ(0,1)δ>0 

注:上面的   ( 31 )   ~(31)~  (31) 其实是标准 Wolfe 显然得出的结论,或许有对 Armijo 型线搜索不熟悉,可以私信交流   ( 32 )   ~(32)~  (32)    ( 33 )   ~(33)~  (33) 。以上的分析只是想说明,我们给出的线搜索   ( 30 )   ~(30)~  (30) t条件很好满足而已。

定理3: 设目标函数   f ( x )   ~f(x)~  f(x) 有下界,导函数   g ( x )   ~g(x)~  g(x)    L i p s c h i t z   ~Lipschitz~  Lipschitz 连续,考虑方法   ( 2 )   ~(2)~  (2)    ( 3 )   ~(3)~  (3) ,其中   β k   ~\beta_k~  βk    ( 4 )   ~(4)~  (4) 计算,   d k   ~d_k~  dk 满足   g k T d k < 0   ~g_k^T d_k<0~  gkTdk<0 ,而步长因子   α k   ~\alpha_k~  αk 满足   ( 30 )   ~(30)~  (30) ,如果存在常数   γ ˉ > 0   ~\bar{\gamma}>0~  γˉ>0 ,使得
∥ g k ∥ ≤ γ ˉ ,    ∀   k ≥ 1 (34) \Vert g_k\Vert\le\bar{\gamma},~~\forall ~k\ge 1 \tag{34} gkγˉ,   k1(34)
则方法在下述意义下是全局收敛的:
lim ⁡ k → ∞ inf ⁡ ∥ g k ∥ = 0 (35) \lim_{k\rightarrow\infty}\inf\Vert g_k\Vert=0\tag{35} kliminfgk=0(35)

证明:   ( 30 )   ~(30)~  (30) 式求和,并注意到   f ( x )   ~f(x)~  f(x) 有下界,得
∑ k ≥ 1 min ⁡ { − g k T d k , ∥ d k ∥ 2 , q k − 1 } ≤ + ∞ (36) \sum_{k\ge 1}\min\left\{-g_k^T d_k,\Vert d_k\Vert^2,q_k^{-1}\right\}\le+\infty\tag{36} k1min{gkTdk,dk2,qk1}+(36)
现用反证法,假设   ( 35 )   ~(35)~  (35) 不成立,即存在常数   γ > 0   ~\gamma>0~  γ>0 ,使得
∥ g k ∥ ≥ γ ,    ∀   k ≥ 1 (37) \Vert g_k\Vert\ge\gamma,~~\forall~k\ge1\tag{37} gkγ,   k1(37)
定理2 可知,关系式   ( 12 )   ~(12)~  (12)    ( 13 )   ~(13)~  (13) 对某正常数   δ 1   ~\delta_1~  δ1    δ 2   ~\delta_2~  δ2 成立,此外,在   ( 15 )   ~(15)~  (15) 中应用   ( 17 )   ~(17)~  (17)    ( 37 )   ~(37)~  (37) ,得
q k ≤ q k − 1 + 1 γ 2 q_k\le q_{k-1}+\frac{1}{\gamma^2} qkqk1+γ21
上式及   q 1 = 1   ~q_1=1~  q1=1 表明了
q k − 1 ≥ γ 2 k (38) q_k^{-1}\ge\frac{\gamma^2}{k}\tag{38} qk1kγ2(38)
于是利用   ( 12 )   ~(12)~  (12)    ( 13 )   ~(13)~  (13)    ( 38 )   ~(38)~  (38) ,得到
∑ k ≥ 1 min ⁡ { − g k T d k , ∥ d k ∥ 2 , q k − 1 } = + ∞ \sum_{k\ge 1}\min \left\{-g_k^T d_k,\Vert d_k\Vert^2,q_k^{-1}\right\}=+\infty k1min{gkTdk,dk2,qk1}=+
上式和   ( 36 )   ~(36)~  (36) 相矛盾,则表明   ( 35 )   ~(35)~  (35) 式成立。

4、结束语
   其实上面的过程我也看了很久,也有一些不懂的地方,也都用 进行标记,之所以还要写出来,也希望遇见一个研究无约束优化特别是共轭梯度法的朋友,能够相互探讨,相互学习吧。

   上面的内容参考 戴彧虹 的文章
[1] New properties of a nonlinear conjugate gradient method. Numerische Matheematik, 89, 83-98.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多情剑客无情剑yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值