上海理工大学2019年研究生入学考试试题《高等代数》
一、(15分)
~
V
~V~
V 是数域
P
~P~
P 上的
n
~n~
n 维线性空间,求数乘变换的所有特征值和特征向量。
解:这题是简单题,感觉是课本的原题
数乘变换
k
~k~
k 在
V
~V~
V 上任意一组基下的矩阵是数乘矩阵,而
n
~n~
n 维数乘矩阵的特征值只有一个
k
~k~
k ,任意的非零向量都是其对应的特征向量。
二、(15分)
~
设向量组
α
1
,
α
2
,
…
,
α
m
~\alpha_1,\alpha_2,\dots,\alpha_m~
α1,α2,…,αm 线性无关,向量
β
1
~\beta_1~
β1 可由它线性表出,而向量组
β
2
~\beta_2~
β2 不能由它线性表出,判断
α
1
,
α
2
,
…
,
α
m
,
β
1
+
β
2
~\alpha _1,\alpha_2,\dots,\alpha_m,\beta_1+\beta_2~
α1,α2,…,αm,β1+β2 是线性无关还是线性相关,给出理由.
解:这是一道简单题,感觉就是书上的习题,结论是显然线性无关,过程不写。
三、(20分)
~~
设
P
~P~
P 为数域,在
P
2
×
2
~\mathbb{P}^{2\times 2}~
P2×2 中令
这题后面就不写了,主要是题目信息就不全,
主要是给出两个矩阵集合,说一下问题吧,第一问要你证明这两个矩阵集合都是线性空间,第二问就是求线性子空间的和空间,第三问就是线性子空间的交空间。
注:一道很常规的题目,把书上的线性空间的习题随便看一下,就没有问题
四、(20分)
~
(1)
~
设
V
~V~
V 是数域
P
~P~
P 上
n
~n~
n 维线性空间,求由
V
~V~
V 的全体线性变换组成的线性空间的维数,给出理由。
解:给定一组标准正交基,全体线性变换在该标准正交基下的矩阵就是矩阵的全体集合,显然有
d
i
m
(
P
n
×
n
)
=
n
2
~dim(P^{n\times n})=n^2~
dim(Pn×n)=n2 ,所以由
V
~V~
V 的全体线性变换组成的线性空间的维数也是
n
2
~n^2~
n2 .
~
(2)
~
设
A
~\mathscr{A}~
A 是
n
~n~
n 维线性空间
V
~V~
V 上的线性变换,证明:
A
的秩
+
A
的零度
=
n
~\mathscr{A}的秩+\mathscr{A}的零度=n~
A的秩+A的零度=n
解:书上课本的结论,用扩基的思想证明,过程不写了。
五、(15分)
~
设
f
(
x
1
,
x
2
,
…
,
x
n
)
=
X
′
A
X
~f(x_1,x_2,\dots,x_n)=X^{'}AX~
f(x1,x2,…,xn)=X′AX 是一实二次型,已知有
n
~n~
n 维实向量
X
1
和
X
2
~X_1~和~X_2~
X1 和 X2 ,使
X
1
′
A
X
1
>
0
~X_1^{'}AX_1>0~
X1′AX1>0 且
X
2
′
A
X
2
<
0
~X_2^{'}AX_2<0~
X2′AX2<0 ,证明:必存在实
n
~n~
n 维向量
X
0
≠
0
~X_0\neq 0~
X0=0 使
X
0
′
A
X
0
=
0
~X_0^{'}AX_0=0~
X0′AX0=0
证明:这应该是课本习题吧,其实
X
1
′
A
X
1
>
0
~X_1^{'}AX_1>0~
X1′AX1>0 且
X
2
′
A
X
2
<
0
~X_2^{'}AX_2<0~
X2′AX2<0 说明
A
~A~
A 存在正负惯性指数,所以构造非零向量
X
0
≠
0
~X_0\neq 0~
X0=0 使
X
0
′
A
X
0
=
0
~X_0^{'}AX_0=0~
X0′AX0=0 是显然的。过程不想写,主要思想是用非退化的线性替换将该二次型化为规范形。
六、(15分)
~
A
~A~
A 为
n
~n~
n 阶方阵,
D
~D~
D 为
n
~n~
n 维列向量,
(
c
1
,
c
2
,
…
,
c
n
)
~(c_1,c_2,\dots,c_n)~
(c1,c2,…,cn) 是线性方程组
A
X
=
D
~AX=D~
AX=D 的唯一解.
~
设
α
1
,
α
2
,
…
,
α
n
~\alpha_1,\alpha_2,\dots,\alpha_n~
α1,α2,…,αn 分别是
A
~A~
A 的列向量,令
β
i
=
α
i
+
α
i
+
1
,
i
=
1
,
2
,
…
,
n
−
1
,
β
n
=
α
n
~\beta_i=\alpha_i+\alpha_{i+1},~i=1,2,\dots,n-1~,\beta_n=\alpha_n~
βi=αi+αi+1, i=1,2,…,n−1 ,βn=αn ,再令
B
=
(
β
1
,
β
2
,
…
,
β
n
)
~B=(\beta_1,\beta_2,\dots,\beta_n)~
B=(β1,β2,…,βn) ,求
B
X
=
D
~BX=D~
BX=D 的解
解:这个题也很简单。首先
A
X
=
D
~AX=D~
AX=D 有唯一解,说明
A
~A~
A 可逆,即向量组
α
1
,
α
2
,
…
,
α
n
~\alpha_1,\alpha_2,\dots,\alpha_n~
α1,α2,…,αn 是线性无关,根据题意,
我们可知
B
~B~
B 的列向量组
α
1
+
α
2
,
α
2
+
α
3
,
…
,
α
n
−
1
+
α
n
,
α
n
~\alpha_1+\alpha_2,\alpha_2+\alpha_3,\dots,\alpha_{n-1}+\alpha_n,\alpha_n~
α1+α2,α2+α3,…,αn−1+αn,αn 是线性无关(过程省),所以
B
X
=
D
~BX=D~
BX=D 也是只有唯一解,
在此我直接给出唯一解的形式,我个人觉得要分奇偶性讨论一下
当
n
~n~
n 为奇数时解为
(
c
1
,
c
2
−
c
1
,
c
3
−
c
2
+
c
1
,
…
,
c
n
−
c
n
−
1
+
c
n
−
2
−
⋯
+
1
)
~(c_1,c_2-c_1,c_3-c_2+c_1,\dots,c_n-c_{n-1}+c_{n-2}-\dots+1)~
(c1,c2−c1,c3−c2+c1,…,cn−cn−1+cn−2−⋯+1)
当
n
~n~
n 为偶数时解为
(
c
1
,
c
2
−
c
1
,
c
3
−
c
2
+
c
1
,
…
,
c
n
−
c
n
−
1
+
c
n
−
2
−
⋯
−
1
)
~(c_1,c_2-c_1,c_3-c_2+c_1,\dots,c_n-c_{n-1}+c_{n-2}-\dots-1)~
(c1,c2−c1,c3−c2+c1,…,cn−cn−1+cn−2−⋯−1)
七、(10分)
~
判断多项式
f
(
x
)
=
1
+
x
1
!
+
x
2
2
!
+
⋯
+
x
n
n
!
f(x)=1+\frac{x}{1!}+\frac{x^2}{2!} + \dots+ \frac{x^n}{n!}
f(x)=1+1!x+2!x2+⋯+n!xn
是否存在重根,给出理由
证明:显然不存在,因为
(
f
(
x
)
,
f
′
(
x
)
)
=
1
~(f(x),f^{'}(x))=1~
(f(x),f′(x))=1
八、(1)
~
求
λ
−
矩阵
~\lambda-矩阵~
λ−矩阵 的标准形
(
1
−
λ
λ
2
λ
λ
λ
−
λ
1
+
λ
2
λ
2
−
λ
2
)
\begin{pmatrix} 1-\lambda&\lambda^2&\lambda\\ \lambda&\lambda&-\lambda\\ 1+\lambda^2&\lambda^2&-\lambda^2 \end{pmatrix}
1−λλ1+λ2λ2λλ2λ−λ−λ2
解:这是很常规的题目,过程不想写
(2)设矩阵
(
−
1
−
2
6
−
1
0
3
−
1
−
1
4
)
\begin{pmatrix} -1&-2&6\\ -1&0&3\\ -1&-1&4 \end{pmatrix}
−1−1−1−20−1634
求
A
k
~A^k~
Ak
解:过程不想算,先相似对角化,再继续算
A
k
~A^k~
Ak 。
九、后面是两个计算行列式,都很简单。
(1)、
D
n
=
∣
2
1
0
…
0
0
1
2
1
…
0
0
0
1
2
…
0
0
⋮
⋮
⋮
⋮
⋮
0
0
0
…
2
1
0
0
0
…
1
2
∣
D_n=\begin{vmatrix} 2&1&0&\dots&0&0\\ 1&2&1&\dots&0&0\\ 0&1&2&\dots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\dots&2&1\\ 0&0&0&\dots&1&2 \end{vmatrix}
Dn=
210⋮00121⋮00012⋮00……………000⋮21000⋮12
解:显然有
D
n
=
2
D
n
−
1
−
D
n
−
2
~D_n=2D_{n-1}-D_{n-2}~
Dn=2Dn−1−Dn−2 ,其特征方程即是
λ
2
=
2
λ
−
1
~\lambda^2=2\lambda-1~
λ2=2λ−1 ,得到特征值
λ
=
1
(
二重根
)
~\lambda=1(二重根)~
λ=1(二重根) ,最后再设其解的形式
D
n
=
c
1
n
+
c
2
~D_n=c_1n+c_2~
Dn=c1n+c2 ,容易求得
c
1
=
c
2
=
1
~c_1=c_2=1~
c1=c2=1
故
D
n
=
1
+
n
~D_n=1+n~
Dn=1+n
(2)
D
n
=
∣
1
+
2
a
1
a
1
+
a
2
…
a
1
+
a
n
a
2
+
a
1
1
+
2
a
2
…
a
2
+
a
n
⋮
⋮
⋮
a
n
+
a
1
a
n
+
a
2
…
1
+
2
a
n
∣
D_n=\begin{vmatrix} 1+2a_1&a_1+a_2&\dots&a_1+a_n\\ a_2+a_1&1+2a_2&\dots&a_2+a_n\\ \vdots&\vdots&&\vdots\\ a_n+a_1&a_n+a_2&\dots&1+2a_n \end{vmatrix}
Dn=
1+2a1a2+a1⋮an+a1a1+a21+2a2⋮an+a2………a1+ana2+an⋮1+2an
解:观察,我们有
D
n
=
∣
E
n
+
(
a
1
1
a
2
1
⋮
⋮
a
n
1
)
(
1
1
…
1
a
1
a
2
…
a
n
)
∣
D_n=\vert E_n+\begin{pmatrix}a_1&1\\a_2&1\\\vdots&\vdots\\a_n&1\end{pmatrix}\begin{pmatrix}1&1&\dots&1\\a_1&a_2&\dots&a_n\end{pmatrix}\vert
Dn=∣En+
a1a2⋮an11⋮1
(1a11a2……1an)∣
由于
∣
E
n
+
A
B
∣
=
∣
E
n
+
B
A
∣
~\vert E_n+AB\vert=\vert E_n+BA\vert~
∣En+AB∣=∣En+BA∣ ,故
D
n
=
∣
E
2
+
(
1
1
…
1
a
1
a
2
…
a
n
)
(
a
1
1
a
2
1
⋮
⋮
a
n
1
)
∣
D_n=\vert E_2+\begin{pmatrix}1&1&\dots&1\\a_1&a_2&\dots&a_n\end{pmatrix}\begin{pmatrix}a_1&1\\a_2&1\\\vdots&\vdots\\a_n&1\end{pmatrix}\vert
Dn=∣E2+(1a11a2……1an)
a1a2⋮an11⋮1
∣
这就是求一个二阶行列式,我直接给出答案吧
D
n
=
(
1
+
∑
i
=
1
n
a
i
)
2
−
n
∑
i
=
1
n
a
i
2
D_n=(1+\sum_{i=1}^na_i)^2-n\sum_{i=1}^na_i^2
Dn=(1+i=1∑nai)2−ni=1∑nai2
2019年上海理工大学《高等代数》试题和答案——解题人(蔡宇)
于 2021-11-12 19:51:17 首次发布