2019年上海理工大学《高等代数》试题和答案——解题人(蔡宇)

上海理工大学2019年研究生入学考试试题《高等代数》
一、(15分)   ~     V   ~V~  V 是数域   P   ~P~  P 上的   n   ~n~  n 维线性空间,求数乘变换的所有特征值和特征向量。

:这题是简单题,感觉是课本的原题
数乘变换   k   ~k~  k    V   ~V~  V 上任意一组基下的矩阵是数乘矩阵,而   n   ~n~  n 维数乘矩阵的特征值只有一个   k   ~k~  k ,任意的非零向量都是其对应的特征向量。

二、(15分)   ~  设向量组   α 1 , α 2 , … , α m   ~\alpha_1,\alpha_2,\dots,\alpha_m~  α1,α2,,αm 线性无关,向量   β 1   ~\beta_1~  β1 可由它线性表出,而向量组   β 2   ~\beta_2~  β2 不能由它线性表出,判断   α 1 , α 2 , … , α m , β 1 + β 2   ~\alpha _1,\alpha_2,\dots,\alpha_m,\beta_1+\beta_2~  α1,α2,,αm,β1+β2 是线性无关还是线性相关,给出理由.

:这是一道简单题,感觉就是书上的习题,结论是显然线性无关,过程不写。

三、(20分)    ~~      P   ~P~  P 为数域,在   P 2 × 2   ~\mathbb{P}^{2\times 2}~  P2×2 中令
这题后面就不写了,主要是题目信息就不全,
主要是给出两个矩阵集合,说一下问题吧,第一问要你证明这两个矩阵集合都是线性空间,第二问就是求线性子空间的和空间,第三问就是线性子空间的交空间。
:一道很常规的题目,把书上的线性空间的习题随便看一下,就没有问题

四、(20分)   ~  (1)   ~     V   ~V~  V 是数域   P   ~P~  P    n   ~n~  n 维线性空间,求由   V   ~V~  V 的全体线性变换组成的线性空间的维数,给出理由。

:给定一组标准正交基,全体线性变换在该标准正交基下的矩阵就是矩阵的全体集合,显然有   d i m ( P n × n ) = n 2   ~dim(P^{n\times n})=n^2~  dim(Pn×n)=n2 ,所以由   V   ~V~  V 的全体线性变换组成的线性空间的维数也是   n 2   ~n^2~  n2 .

  ~  (2)   ~     A   ~\mathscr{A}~  A    n   ~n~  n 维线性空间   V   ~V~  V 上的线性变换,证明:   A 的 秩 + A 的 零 度 = n   ~\mathscr{A}的秩+\mathscr{A}的零度=n~  A+A=n 

解:书上课本的结论,用扩基的思想证明,过程不写了。

五、(15分)   ~     f ( x 1 , x 2 , … , x n ) = X ′ A X   ~f(x_1,x_2,\dots,x_n)=X^{'}AX~  f(x1,x2,,xn)=XAX 是一实二次型,已知有   n   ~n~  n 维实向量   X 1   和   X 2   ~X_1~和~X_2~  X1  X2 ,使   X 1 ′ A X 1 > 0   ~X_1^{'}AX_1>0~  X1AX1>0    X 2 ′ A X 2 < 0   ~X_2^{'}AX_2<0~  X2AX2<0 ,证明:必存在实   n   ~n~  n 维向量   X 0 ≠ 0   ~X_0\neq 0~  X0=0 使   X 0 ′ A X 0 = 0   ~X_0^{'}AX_0=0~  X0AX0=0 

证明:这应该是课本习题吧,其实   X 1 ′ A X 1 > 0   ~X_1^{'}AX_1>0~  X1AX1>0    X 2 ′ A X 2 < 0   ~X_2^{'}AX_2<0~  X2AX2<0 说明   A   ~A~  A 存在正负惯性指数,所以构造非零向量   X 0 ≠ 0   ~X_0\neq 0~  X0=0 使   X 0 ′ A X 0 = 0   ~X_0^{'}AX_0=0~  X0AX0=0 是显然的。过程不想写,主要思想是用非退化的线性替换将该二次型化为规范形。

六、(15分)   ~     A   ~A~  A    n   ~n~  n 阶方阵,   D   ~D~  D    n   ~n~  n 维列向量,   ( c 1 , c 2 , … , c n )   ~(c_1,c_2,\dots,c_n)~  (c1,c2,,cn) 是线性方程组   A X = D   ~AX=D~  AX=D 的唯一解.   ~     α 1 , α 2 , … , α n   ~\alpha_1,\alpha_2,\dots,\alpha_n~  α1,α2,,αn 分别是   A   ~A~  A 的列向量,令   β i = α i + α i + 1 ,   i = 1 , 2 , … , n − 1   , β n = α n   ~\beta_i=\alpha_i+\alpha_{i+1},~i=1,2,\dots,n-1~,\beta_n=\alpha_n~  βi=αi+αi+1, i=1,2,,n1 ,βn=αn ,再令   B = ( β 1 , β 2 , … , β n )   ~B=(\beta_1,\beta_2,\dots,\beta_n)~  B=(β1,β2,,βn) ,求   B X = D   ~BX=D~  BX=D 的解

解:这个题也很简单。首先   A X = D   ~AX=D~  AX=D 有唯一解,说明   A   ~A~  A 可逆,即向量组   α 1 , α 2 , … , α n   ~\alpha_1,\alpha_2,\dots,\alpha_n~  α1,α2,,αn 是线性无关,根据题意,
我们可知   B   ~B~  B 的列向量组   α 1 + α 2 , α 2 + α 3 , … , α n − 1 + α n , α n   ~\alpha_1+\alpha_2,\alpha_2+\alpha_3,\dots,\alpha_{n-1}+\alpha_n,\alpha_n~  α1+α2,α2+α3,,αn1+αn,αn 是线性无关(过程省),所以   B X = D   ~BX=D~  BX=D 也是只有唯一解,
在此我直接给出唯一解的形式,我个人觉得要分奇偶性讨论一下
  n   ~n~  n 为奇数时解为   ( c 1 , c 2 − c 1 , c 3 − c 2 + c 1 , … , c n − c n − 1 + c n − 2 − ⋯ + 1 )   ~(c_1,c_2-c_1,c_3-c_2+c_1,\dots,c_n-c_{n-1}+c_{n-2}-\dots+1)~  (c1,c2c1,c3c2+c1,,cncn1+cn2+1) 
  n   ~n~  n 为偶数时解为   ( c 1 , c 2 − c 1 , c 3 − c 2 + c 1 , … , c n − c n − 1 + c n − 2 − ⋯ − 1 )   ~(c_1,c_2-c_1,c_3-c_2+c_1,\dots,c_n-c_{n-1}+c_{n-2}-\dots-1)~  (c1,c2c1,c3c2+c1,,cncn1+cn21) 

七、(10分)   ~  判断多项式
f ( x ) = 1 + x 1 ! + x 2 2 ! + ⋯ + x n n ! f(x)=1+\frac{x}{1!}+\frac{x^2}{2!} + \dots+ \frac{x^n}{n!} f(x)=1+1!x+2!x2++n!xn
是否存在重根,给出理由
证明:显然不存在,因为   ( f ( x ) , f ′ ( x ) ) = 1   ~(f(x),f^{'}(x))=1~  (f(x),f(x))=1 

八、(1)   ~     λ − 矩 阵   ~\lambda-矩阵~  λ 的标准形
( 1 − λ λ 2 λ λ λ − λ 1 + λ 2 λ 2 − λ 2 ) \begin{pmatrix} 1-\lambda&\lambda^2&\lambda\\ \lambda&\lambda&-\lambda\\ 1+\lambda^2&\lambda^2&-\lambda^2 \end{pmatrix} 1λλ1+λ2λ2λλ2λλλ2
:这是很常规的题目,过程不想写
(2)设矩阵
( − 1 − 2 6 − 1 0 3 − 1 − 1 4 ) \begin{pmatrix} -1&-2&6\\ -1&0&3\\ -1&-1&4 \end{pmatrix} 111201634
  A k   ~A^k~  Ak 
:过程不想算,先相似对角化,再继续算   A k   ~A^k~  Ak 

九、后面是两个计算行列式,都很简单。
(1)、
D n = ∣ 2 1 0 … 0 0 1 2 1 … 0 0 0 1 2 … 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 … 2 1 0 0 0 … 1 2 ∣ D_n=\begin{vmatrix} 2&1&0&\dots&0&0\\ 1&2&1&\dots&0&0\\ 0&1&2&\dots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\dots&2&1\\ 0&0&0&\dots&1&2 \end{vmatrix} Dn=2100012100012000002100012
:显然有   D n = 2 D n − 1 − D n − 2   ~D_n=2D_{n-1}-D_{n-2}~  Dn=2Dn1Dn2 ,其特征方程即是   λ 2 = 2 λ − 1   ~\lambda^2=2\lambda-1~  λ2=2λ1 ,得到特征值   λ = 1 ( 二 重 根 )   ~\lambda=1(二重根)~  λ=1() ,最后再设其解的形式   D n = c 1 n + c 2   ~D_n=c_1n+c_2~  Dn=c1n+c2 ,容易求得   c 1 = c 2 = 1   ~c_1=c_2=1~  c1=c2=1 
  D n = 1 + n   ~D_n=1+n~  Dn=1+n 

(2)
D n = ∣ 1 + 2 a 1 a 1 + a 2 … a 1 + a n a 2 + a 1 1 + 2 a 2 … a 2 + a n ⋮ ⋮ ⋮ a n + a 1 a n + a 2 … 1 + 2 a n ∣ D_n=\begin{vmatrix} 1+2a_1&a_1+a_2&\dots&a_1+a_n\\ a_2+a_1&1+2a_2&\dots&a_2+a_n\\ \vdots&\vdots&&\vdots\\ a_n+a_1&a_n+a_2&\dots&1+2a_n \end{vmatrix} Dn=1+2a1a2+a1an+a1a1+a21+2a2an+a2a1+ana2+an1+2an
:观察,我们有
D n = ∣ E n + ( a 1 1 a 2 1 ⋮ ⋮ a n 1 ) ( 1 1 … 1 a 1 a 2 … a n ) ∣ D_n=\vert E_n+\begin{pmatrix}a_1&1\\a_2&1\\\vdots&\vdots\\a_n&1\end{pmatrix}\begin{pmatrix}1&1&\dots&1\\a_1&a_2&\dots&a_n\end{pmatrix}\vert Dn=En+a1a2an111(1a11a21an)
由于   ∣ E n + A B ∣ = ∣ E n + B A ∣   ~\vert E_n+AB\vert=\vert E_n+BA\vert~  En+AB=En+BA ,故
D n = ∣ E 2 + ( 1 1 … 1 a 1 a 2 … a n ) ( a 1 1 a 2 1 ⋮ ⋮ a n 1 ) ∣ D_n=\vert E_2+\begin{pmatrix}1&1&\dots&1\\a_1&a_2&\dots&a_n\end{pmatrix}\begin{pmatrix}a_1&1\\a_2&1\\\vdots&\vdots\\a_n&1\end{pmatrix}\vert Dn=E2+(1a11a21an)a1a2an111
这就是求一个二阶行列式,我直接给出答案吧
D n = ( 1 + ∑ i = 1 n a i ) 2 − n ∑ i = 1 n a i 2 D_n=(1+\sum_{i=1}^na_i)^2-n\sum_{i=1}^na_i^2 Dn=(1+i=1nai)2ni=1nai2

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多情剑客无情剑yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值