一种特殊的函数——范数

一、范数定义

1、定义:设   X   ~\mathbb{X}~  X 是数域   K   ~\mathbb{K}~  K 上的线性空间,函数   ∥ ∙ ∥ : X → R 满 足 :   ~\Vert \bullet\Vert:\mathbb{X}\rightarrow\mathbb{R}满足:~  :XR 
(1)   ∀ x ∈ R , ∥ x ∥ ≥ 0   ~\forall x\in\mathbb{R},\Vert x \Vert\ge 0~  xR,x0 (非负性)
(2)   ∥ x ∥ = 0   当 且 仅 当   x = 0   ~\Vert x\Vert=0~当且仅当~x=0~  x=0  x=0 (正定性)
(3)   ∀ x ∈ X ,   α ∈ K ,   ∥ a x ∥ = ∣ a ∣ ∥ x ∥   ~\forall x\in\mathbb{X},~\alpha\in\mathbb{K},~\Vert ax\Vert=\vert a\vert\Vert x\Vert~  xX, αK, ax=ax (正齐次)
(4)   ∀ x , y ∈ K ,   ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥   ~\forall x,y\in\mathbb{K},~\Vert x+y\Vert\le\Vert x\Vert+\Vert y\Vert~  x,yK, x+yx+y (三角不等式性)
则称   ∥ ∙ ∥ 是 ~\Vert \bullet\Vert是     X   ~\mathbb{X}~  X 上的一个范数.   ~  定义了范数的线性空间我们称为赋范线性空间,记为   ( X , ∥ ∙ ∥ )   ~(\mathbb{X},\Vert \bullet\Vert)~  (X,) ,或简记为   X   ~X~  X 
2、由范数可以定义距离
d ( x , y ) = ∥ x − y ∥ d(x,y)=\Vert x-y\Vert d(x,y)=xy
容易证明   d ( x , y )   ~d(x,y)~  d(x,y) 是一个距离,因此赋范空间一定是距离空间,如无特殊说明,赋范空间的距离都是范数诱导的距离。

二、向量范数

以上只是一般空间上范数的定义,如果范数作用在向量空间上,我们就得到向量范数。下面我们将给出几种具体的   l p   ~l_p~  lp 向量范数

1、向量的   1 − 范 数   ~1-范数~  1 
∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ \Vert x\Vert_1=\sum_{i=1}^{n}\vert x_i\vert x1=i=1nxi
2、向量的   2 − 范 数   ~2-范数~  2 
∥ x ∥ 2 = ( ∑ i = 1 n x i 2 ) 1 2 \Vert x\Vert_2=(\sum_{i=1}^{n}x_i^2)^{\frac{1}{2}} x2=(i=1nxi2)21
3、向量的   ∞ − 范 数   ~\infty-范数~   
∥ x ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \Vert x\Vert_\infty=\max\limits_{1\le i\le n}\vert x_i\vert x=1inmaxxi
4、向量的   p − 范 数   ~p-范数~  p 
∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p    p ∈ [ 1 , ∞ ] \Vert x\Vert_p=(\sum_{i=1}^{n}\vert x_i\vert^p)^{\frac{1}{p}}~~p\in[1,\infty] xp=(i=1nxip)p1  p[1,]
5、我们可以证明上面定义的四种函数都是范数,虽然我们开始直接表明了就是范数,这个是需要证明的,证明的过程很机械,就是按照范数的定义再结合函数的定义。

6、为了配合下面的知识,我们给出一种常识,向量序列收敛的定义。
  { x k }   ~\left\{x^k\right\}~  {xk}    R n   ~\mathbb{R}^n~  Rn 中的向量序列,   x ∗ ∈ R n   ~x^*\in\mathbb{R}^n~  xRn ,记   x k = ( x 1 k , x 2 k , … , x n k ) T , x ∗ = ( x 1 ∗ , x 2 ∗ , … , x n ∗ )   ~x^k=(x_1^k,x_2^k,\dots,x_n^k)^T,x^*=(x_1^*,x_2^*,\dots,x_n^*)~  xk=(x1k,x2k,,xnk)Tx=(x1,x2,,xn) .如果   lim ⁡ k → ∞ x i k = x i ∗ ( i = 1 , 2 , … , n )   ~\lim\limits_{k\rightarrow\infty}x_i^{k}=x_i^*(i=1,2,\dots,n)~  klimxik=xi(i=1,2,,n) ,则称   x k   ~x^k~  xk 收敛于向量   x ∗   ~x^*~  x 
lim ⁡ k → ∞ x k = x ∗ \lim\limits_{k\rightarrow\infty}x^k=x^* klimxk=x
7、(向量范数的连续性)   ~  设非负函数   N ( x ) = ∥ x ∥   ~N(x)=\Vert x\Vert~  N(x)=x    R n   ~\mathbb{R}^n~  Rn 上任一向量范数,则   N ( x ) 是   x   ~N(x)是~x~  N(x) x 的分量   x 1 , x 2 , … , x n   ~x_1,x_2,\dots,x_n~  x1,x2,,xn 的连续函数。
证明:设   x = ∑ i = 1 n x i e i   ~x=\sum\limits_{i=1}^{n}x_ie_i~  x=i=1nxiei ,   y = ∑ i = 1 n y i e i   ~y=\sum\limits_{i=1}^{n}y_ie_i~  y=i=1nyiei ,其中   e i = ( 0 , … , 1 , 0 , … , 0 ) T   ~e_i=(0,\dots,1,0,\dots,0)^T~  ei=(0,,1,0,,0)T 
我们只需证明当   x → y   ~x\rightarrow y~  xy    N ( x ) → N ( y )   ~N(x)\rightarrow N(y)~  N(x)N(y) 即成,实际上
∣ N ( x ) − N ( y ) ∣ = ∣ ∥ x ∥ − ∥ y ∥ ∣ ≤ ∥ x − y ∥ = ∥ ∑ i = 1 n ( x i − y i ) e i ∥ ≤ ∑ i = 1 n ∣ x i − y i ∣ ∥ e i ∥ ≤ ∥ x − y ∥ ∞ ∑ i = 1 n ∥ e i ∥ \begin{aligned} \vert N(x)-N(y)\vert&=\vert \Vert x\Vert-\Vert y\Vert\vert\le\Vert x-y\Vert\\ &=\Vert \sum\limits_{i=1}^n(x_i-y_i)e_i\Vert\le\sum\limits_{i=1}^n\vert x_i-y_i\vert\Vert e_i\Vert\\ &\le\Vert x-y\Vert_{\infty}\sum\limits_{i=1}^{n}\Vert e_i\Vert \end{aligned} N(x)N(y)=xyxy=i=1n(xiyi)eii=1nxiyieixyi=1nei

∣ N ( x ) − n ( y ) ∣ ≤ c ∥ x − y ∥ ∞ → 0    ( 当   x → y 时 )     c = ∑ i = 1 n ∥ e i ∥ \vert N(x)-n(y)\vert\le c\Vert x-y\Vert_{\infty}\rightarrow 0~~(当~x\rightarrow y时)~~~c=\sum\limits_{i=1}^n\Vert e_i\Vert N(x)n(y)cxy0  ( xy)   c=i=1nei

8、(向量范数的等价性)   ~     ∥ x ∥ s   , ∥ x ∥ t   ~\Vert x\Vert_s~,\Vert x\Vert_t~  xs ,xt    R n   ~\mathbb{R}^n~  Rn 上向量的任意两种范数,则存在常数   c 1 , c 2 > 0   ~c_1,c_2>0~  c1,c2>0 ,使得对一切的   x ∈ R n   ~x\in\mathbb{R}^n~  xRn 
c 1 ∥ x ∥ s ≤ ∥ x ∥ t ≤ c 2 ∥ x ∥ s c_1\Vert x\Vert_s\le\Vert x\Vert_t\le c_2\Vert x\Vert_s c1xsxtc2xs
证明:我个人觉得这个证明很经典
我们就   ∥ x ∥ s = ∥ x ∥ ∞   ~\Vert x\Vert_s=\Vert x\Vert_{\infty}~  xs=x ,证明上式成立即可,即证明存在常数   c 1 , c 2 > 0   ~c_1,c_2>0~  c1,c2>0 ,使
c 1 ≤ ∥ x ∥ t ∥ x ∥ ∞ ≤ c 2 ,    对 一 切 R n 且   x ≠ 0 c_1\le\frac{\Vert x\Vert_t}{\Vert x\Vert_{\infty}}\le c_2,~~对一切\mathbb{R}^n且~x\neq 0 c1xxtc2,  Rn x=0
考虑函数
f ( x ) = ∥ x ∥ t ≥ 0 ,    x ∈ R n f(x)=\Vert x\Vert_t\ge 0,~~x\in\mathbb{R}^n f(x)=xt0,  xRn
  S = { x ∣ ∥ x ∥ ∞ = 1 , x ∈ R n }   ~S=\left\{x|\Vert x\Vert_{\infty}=1,x\in\mathbb{R}^n\right\}~  S={xx=1,xRn} ,则   S   ~S~  S 是一个有界闭集。根据上面的知识,我们知道   f ( x )   ~f(x)~  f(x)    S   ~S~  S 上的连续函数,所以   f ( x )   ~f(x)~  f(x)    S   ~S~  S 上达到最大最小值,即存在   x ′ , , x ′ ′ ∈ S   ~x^{'},,x^{''}\in S~  x,,xS 使得
f ( x ′ ) = min ⁡ x ∈ S f ( x ) = c 1   ,   f ( x ′ ′ ) = min ⁡ x ∈ S f ( x ) = c 2 f(x^{'})=\min\limits_{x\in S}f(x)=c_1~,~f(x^{''})=\min\limits_{x\in S}f(x)=c_2 f(x)=xSminf(x)=c1 , f(x)=xSminf(x)=c2
  x ∈ R n   且   x ≠ 0   ~x\in\mathbb{R}^n~且~x\neq 0~  xRn  x=0 ,则   x ∥ x ∥ ∞ ∈ S   ~\frac{x}{\Vert x\Vert_{\infty}}\in S~  xxS ,从而有
c 1 ≤ f ( x ∥ x ∥ ∞ ) ≤ c 2 c_1\le f(\frac{x}{\Vert x\Vert_{\infty}})\le c_2 c1f(xx)c2
显然   c 1 , c 2 > 0   ~c_1,c_2>0~  c1,c2>0 ,上式为
c 1 ≤ ∥ x ∥ x ∥ ∞ ∥ t ≤ c 2 c_1\le\Vert\frac{x}{\Vert x\Vert_{\infty}}\Vert_t\le c_2 c1xxtc2,

c 1 ∥ x ∥ ∞ ≤ ∥ x ∥ t ≤ c 2 ∥ x ∥ ∞ ,    对 一 切   x ∈ R n c_1\Vert x\Vert_{\infty}\le\Vert x\Vert_t\le c_2\Vert x\Vert_{\infty},~~对一切~x\in\mathbb{R}^n c1xxtc2x,   xRn
注:此性质不能推广到无穷维线性空间,因为不能保证其中   S   ~S~  S 是有界闭集

9、   lim ⁡ k → ∞ x k = x ∗ ⇔ lim ⁡ k → ∞ ∥ x k − x ∗ ∥ = 0   ~\lim\limits_{k\rightarrow\infty}x^k=x^*\Leftrightarrow\lim\limits_{k\rightarrow\infty}\Vert x^k-x^*\Vert=0~  klimxk=xklimxkx=0 ,其中   ∥ ∙ ∥   ~\Vert\bullet\Vert~   为向量的任一范数。
证明:显然,   lim ⁡ k → ∞ x k = x ∗ ⇔ lim ⁡ k → ∞ ∥ x k − x ∗ ∥ ∞ = 0   ~\lim\limits_{k\rightarrow\infty}x^k=x^*\Leftrightarrow\lim\limits_{k\rightarrow\infty}\Vert x^k-x^*\Vert_{\infty}=0~  klimxk=xklimxkx=0 ,而对于   R n   ~\mathbb{R}^n~  Rn 上的任何一种范数   ∥ ∙ ∥   ~\Vert\bullet\Vert~   ,由向量范数的等价性,我们很容易证明此性质。

三、矩阵范数

1、(矩阵范数)   ~  如果矩阵   A ∈ R n × n   ~A\in\mathbb{R}^{n\times n}~  ARn×n 的某个非负的实值函数   N ( A ) = ∥ A ∥   ~N(A)=\Vert A\Vert~  N(A)=A ,满足条件:
(1)   ~     ∥ A ∥ ≥ 0 (   ∥ A ∥ = 0 ⇔ A = 0   )   ~\Vert A\Vert\ge 0(~\Vert A\Vert=0\Leftrightarrow A=0~)~  A0( A=0A=0 ) (正定性条件)
(2)   ~     ∥ c A ∥ = ∣ c ∣ ∥ A ∥   ~\Vert cA\Vert=\vert c\vert\Vert A\Vert~  cA=cA ,   c   ~c~  c 为实数(齐次性条件)
(3)   ~     ∥ A + B ∥ ≤ ∥ A ∥ + ∥ B ∥   ~\Vert A+B\Vert\le\Vert A\Vert+\Vert B\Vert~  A+BA+B (三角不等式)
(4)   ~     ∥ A B ∥ ≤ ∥ A ∥ ∥ B ∥   ~\Vert AB\Vert\le\Vert A\Vert\Vert B\Vert~  ABAB (相容性条件)
则称   N ( A )   ~N(A)~  N(A)    R n × n   ~\mathbb{R}^{n\times n}~  Rn×n 上的矩阵范数(或模)
注:在很多书上也是要求矩阵范数仅仅是满足前三条即可,如果四条性质都满足,我们才称这种范数是相容范数。在此,我们采用大多数书上关于矩阵范数的定义,矩阵范数就已经满足相容性。

2、在实际运算当中,矩阵和向量会同时参与讨论,所以希望引进一种矩阵的范数,使其与向量范数想联系。如要求对任何向量   x ∈ R n   ~x\in\mathbb{R}^n~  xRn    A ∈ R n × n ‘ ~A\in\mathbb{R}^{n\times n}`  ARn×n都成立
∥ A x ∥ ≤ ∥ A ∥ ∥ x ∥ \Vert Ax\Vert\le\Vert A\Vert\Vert x\Vert AxAx
这时称矩阵范数和向量范数相容,为此我们引进算子范数
(矩阵的算子范数)   ~     x ∈ R n   ~x\in\mathbb{R}^n~  xRn    A ∈ R n × n   ~A\in\mathbb{R}^{n\times n}~  ARn×n ,我们给出一种向量范数   ∥ x ∥ v   ~\Vert x\Vert_v~  xv (如   v = 1 , 2   或   ∞   ~v=1,2~或~\infty~  v=1,2   ),相应地定义一个矩阵的非负函数
∥ A ∥ = max ⁡ x ≠ 0 ∥ A x ∥ v ∥ x ∥ v \Vert A\Vert=\max\limits_{x\neq 0}\frac{\Vert Ax\Vert_v}{\Vert x\Vert_v} A=x=0maxxvAxv
我们其实可以很容易验证它是满足矩阵范数的前三条定义的,至于第四条是否满足,我们下面再证明

3、设   ∥ x ∥ v   ~\Vert x\Vert_v~  xv    R n   ~\mathbb{R}^n~  Rn 上的一个向量范数,则   ∥ A ∥ v   ~\Vert A\Vert_v~  Av    R n × n   ~\mathbb{R}^{n\times n}~  Rn×n 上的矩阵范数,且满足矩阵和向量的相容性条件
∥ A x ∥ v ≤ ∥ A ∥ v ∥ x ∥ v \Vert Ax\Vert_v\le\Vert A\Vert_v\Vert x\Vert_v AxvAvxv
证明:由算子范数的定义,我们知矩阵和向量的相容性条件是显然的,则有
∥ A B x ∥ v ≤ ∥ A ∥ v ∥ B x ∥ v ≤ ∥ A ∥ ∥ B ∥ v ∥ x ∥ v \Vert ABx\Vert_v\le\Vert A\Vert_v\Vert Bx\Vert_v\le\Vert A\Vert\Vert B\Vert_v\Vert x\Vert_v ABxvAvBxvABvxv
  x ≠ 0   ~x\neq 0 ~  x=0 时有
∥ A B x ∥ v ∥ x ∥ v ≤ ∥ A ∥ v ∥ B ∥ v \frac{\Vert ABx\Vert_v}{\Vert x\Vert_v}\le\Vert A\Vert_v\Vert B\Vert_v xvABxvAvBv

∥ A B ∥ = max ⁡ x ≠ 0 ∥ A B x ∥ v ∥ x ∥ v ≤ ∥ A ∥ v ∥ B ∥ v \Vert AB\Vert=\max\limits_{x\neq 0}\frac{\Vert ABx\Vert_v}{\Vert x\Vert_v}\le\Vert A\Vert_v\Vert B\Vert_v AB=x=0maxxvABxvAvBv

4、常见的矩阵范数
(1)   ~   (Frobenius范数)
F ( A ) = ∥ A ∥ F = ( ∑ i , j = 1 n a i j 2 ) 1 2 = [ t r ( A T A ) ] 1 2 F(A)=\Vert A\Vert_F=(\sum\limits_{i,j=1}^n a_{ij}^2)^\frac{1}{2}=[tr(A^TA)]^\frac{1}{2} F(A)=AF=(i,j=1naij2)21=[tr(ATA)]21
(2)   ~   (   l 1   ~l_1~  l1 诱导的矩阵范数或列和范数)
∥ A ∥ 1 = max ⁡ j { ∥ a . j ∥ 1 } = max ⁡ j ∑ i = 1 n ∣ a i j ∣ \Vert A\Vert_1=\max\limits_j\left\{\Vert a_{.j}\Vert_1\right\}=\max\limits_j\sum\limits_{i=1}^n\vert a_{ij}\vert A1=jmax{a.j1}=jmaxi=1naij
其中:   a . j   ~a_{.j}~  a.j 表示第   j   ~j~  j 
(3)   ~   (   l 2   ~l_2~  l2 诱导的矩阵范数或谱范数)
∥ A ∥ 2 = ( λ A T A ) 1 2 \Vert A\Vert_2=(\lambda_{A^TA})^\frac{1}{2} A2=(λATA)21
其中   λ A T A   ~\lambda_{A^TA}~  λATA 表示   A T A   ~A^TA~  ATA 的最大特征值
(4)   ~   (   l ∞   ~l_{\infty}~  l 诱导的矩阵范数或行和范数)
∥ A ∥ ∞ = max ⁡ i { ∥ a i . ∥ 1 } = max ⁡ i ∑ j = 1 n ∣ a i j ∣ \Vert A\Vert_{\infty}=\max\limits_i\left\{\Vert a_{i.}\Vert_{1}\right\}=\max\limits_i\sum\limits_{j=1}^n\vert a_{ij}\vert A=imax{ai.1}=imaxj=1naij
其中:   a i .   ~a_{i.}~  ai. 表示第   i   ~i~  i 

5、现在我想证明   F r o b e n i u s   ~Frobenius~  Frobenius 范数不是算子范数,而前面的   ( 2 ) 、 ( 3 ) 、 ( 4 )   ~(2)、(3)、(4)~  (2)(3)(4) 定义的范数是算子范数
证明:首先   ( 1 )   ~(1)~  (1) 中的定义是范数,这个按照定义证明即可。现在用反证法,假设   F r o b e n i u s   ~Frobenius~  Frobenius 范数是算子范数
不妨考虑   n   ~n~  n 阶单位矩阵   E   ~E~  E 的算子范数,由算子范数的定义
∥ E ∥ F = max ⁡ x ≠ 0 ∥ E x ∥ v ∥ x ∥ v = 1 \Vert E\Vert_F=\max\limits_{x\neq 0}\frac{\Vert Ex\Vert_v}{\Vert x\Vert_v}=1 EF=x=0maxxvExv=1
  E   ~E~  E    F r o b e n i u s   ~Frobenius~  Frobenius 范数:   ∥ E ∥ F = n   ~\Vert E\Vert_F=\sqrt{n}~  EF=n  
很显然,当   n ≥ 2   ~n\ge 2~  n2 时,肯定不相等,故   F r o b e n i u s   ~Frobenius~  Frobenius 范数不是算子范数

下面证明   ( 3 ) 、 ( 4 )   ~(3)、(4)~  (3)(4) 是算子范数,同理可以证明   ( 2 )   ~(2)~  (2) 
先证明(3)定义的范数是算子范数
由于对一切   x ∈ R n   ~x\in\mathbb{R}^n~  xRn    ∥ A x ∥ 2 2 = ( A x , A x ) ≥ 0   ~\Vert Ax\Vert_2^2=(Ax,Ax)\ge 0~  Ax22=(Ax,Ax)0 ,从而   A T A   ~A^TA~  ATA 的特征值为非负实数,设为
λ 1 ≥ λ 2 ≥ … λ n ≥ 0 \lambda_1\ge\lambda_2\ge\dots\lambda_n\ge 0 λ1λ2λn0
  A T A   ~A^TA~  ATA 为对称矩阵,设   u 1 , u 2 , … , u n   ~u_1,u_2,\dots,u_n~  u1,u2,,un    A T A   ~A^TA~  ATA 的相应于上面特征值的特征向量且   ( u i , u j ) = δ i j   ~(u_i,u_j)=\delta_{ij}~  (ui,uj)=δij ,又设   x ∈ R n   ~x\in\mathbb{R}^n~  xRn 为任一非零向量,于是有
x = ∑ i = 1 n c i u i x=\sum\limits_{i=1}^{n}c_iu_i x=i=1nciui
其中   c i   ~c_i~  ci 为组合系数,则、
∥ A x ∥ 2 2 ∥ x ∥ 2 2 = ( A T A x , x ) ( x , x ) = ∑ i = 1 n c i 2 λ i ∑ i = 1 n c i 2 ≤ λ 1 \frac{\Vert Ax\Vert_2^2}{\Vert x\Vert_2^2}=\frac{(A^TAx,x)}{(x,x)}=\frac{\sum\limits_{i=1}^{n}c_i^2\lambda_i}{\sum\limits_{i=1}^{n}c_i^2}\le\lambda_1 x22Ax22=(x,x)(ATAx,x)=i=1nci2i=1nci2λiλ1
另一方面,取   x = u 1   ~x=u_1~  x=u1 ,则上式等号成立,故
∥ A ∥ 2 = max ⁡ x ≠ 0 ∥ A x ∥ 2 ∥ x ∥ 2 = λ 1 = λ m a x ( A T A ) \Vert A \Vert_2=\max\limits_{x\neq 0}\frac{\Vert Ax\Vert_2}{\Vert x\Vert_2}=\sqrt{\lambda_1}=\sqrt{\lambda_{max}(A^TA)} A2=x=0maxx2Ax2=λ1 =λmax(ATA)

证明   4   ~4~  4 定义的范数是算子范数
  x = ( x 1 , x 2 , … , x n ) T ≠ 0   ~x=(x_1,x_2,\dots,x_n)^T\neq 0~  x=(x1,x2,,xn)T=0 ,不妨设   A ≠ 0   ~A\neq 0~  A=0 ,记
t = ∥ x ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣    , u = max ⁡ 1 ≤ i ≤ n ∑ j = 1 n ∣ a i j ∣ t=\Vert x\Vert_{\infty}=\max\limits_{1\le i\le n}\vert x_i\vert~~,u=\max\limits_{1\le i\le n}\sum\limits_{j=1}^n\vert a_{ij}\vert t=x=1inmaxxi  ,u=1inmaxj=1naij

∥ A x ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∑ j = 1 n ∣ a i j ∣ ≤ max ⁡ i ∑ j = 1 n ∣ a i j ∣ ∥ x j ∥ ≤ t max ⁡ i ∑ j = 1 n ∣ a i j ∣ \Vert Ax\Vert_{\infty}=\max\limits_{1\le i\le n}\sum\limits_{j=1}^n\vert a_{ij}\vert\le\max\limits_{i}\sum\limits_{j=1}^n\vert a_{ij}\vert\Vert x_j\Vert\le t\max\limits_{i}\sum\limits_{j=1}^n\vert a_{ij}\vert Ax=1inmaxj=1naijimaxj=1naijxjtimaxj=1naij
这说明对任何非零向量   x ∈ R n   ~x\in\mathbb{R}^n~  xRn ,有
∥ A x ∥ ∞ ∥ x ∥ ∞ ≤ u \frac{\Vert Ax\Vert_{\infty}}{\Vert x\Vert_{\infty}}\le u xAxu
下面来说明有一向量   x 0 ≠ 0   ~x_0\neq 0~  x0=0 ,使得   ∥ A x 0 ∥ ∞ ∥ x ∥ ∞ = u   ~\frac{\Vert Ax_0\Vert_{\infty}}{\Vert x\Vert_{\infty}}=u~  xAx0=u ,设   u = ∑ j = 1 n ∣ a i j ∣   ~u=\sum\limits_{j=1}^n\vert a_{ij}\vert~  u=j=1naij ,取向量   x 0 = ( x 1 , x 2 , … , x n ) T   ~x_0=(x_1,x_2,\dots,x_n)^T~  x0=(x1,x2,,xn)T ,其中   x j = s g n ( a i 0 j )   ~x_j=sgn(a_{i_0j})~  xj=sgn(ai0j)    j = 1 , 2 … , n   ~j=1,2\dots,n~  j=1,2,n )显然   ∥ x 0 ∥ = 1   ~\Vert x_0\Vert=1~  x0=1    A x 0   ~Ax_0~  Ax0 的第   i 0   ~i_0~  i0 个分量为   ∑ i = 1 n a i 0 j x j = ∑ j = 1 n ∣ a i 0 j ∣   ~\sum\limits_{i=1}^n a_{i_0 j}x_j=\sum\limits_{j=1}^{n}\vert a_{i_0j}\vert~  i=1nai0jxj=j=1nai0j ,这说明
∥ A x 0 ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ ∑ j = 1 n a i j x j ∣ = ∑ j = 1 n ∣ a i 0 j ∣ = u \Vert Ax_0\Vert_{\infty}=\max\limits_{1\le i\le n}\vert \sum\limits_{j=1}^{n}a_{ij}x_j\vert=\sum\limits_{j=1}^n\vert a_{i_0j}\vert=u Ax0=1inmaxj=1naijxj=j=1nai0j=u

6、由定义可知,矩阵的   2 − 范 数   ~2-范数~  2  ∥ A ∥ 2   \Vert A\Vert_2~ A2 在计算上不方便,但是矩阵的   2 − 范 数   ~2-范数~  2 具有许多好的性质,它在理论上是非常有用的。
(1)   ~  它是正交不变范数,这是很容易证明的,(   F r o b e n i u s 范 数 也 是 正 交 不 变 范 数   ~Frobenius范数也是正交不变范数~  Frobenius )
即是对任意的   A ∈ R n × n   ~A\in\mathbb{R}^{n\times n}~  ARn×n ,设   Q   ~Q~  Q 为正交矩阵,则有
∥ Q A ∥ 2 = ∥ A ∥ 2    ,    ∥ Q A ∥ F = ∥ A ∥ F \Vert QA\Vert_2=\Vert A\Vert_2~~,~~\Vert QA\Vert_F=\Vert A\Vert_F QA2=A2  ,  QAF=AF
(2)   ~  对于复矩阵(即   A ∈ C n × n   ~A\in C^{n\times n}~  ACn×n ),我们定义谱范数
∥ A ∥ 2 = max ⁡ x ≠ 0 ( x H A H A x x H x ) 1 2 = λ m a x ( A H A ) \Vert A\Vert_2=\max\limits_{x\neq 0}(\frac{x^HA^HAx}{x^Hx})^{\frac{1}{2}}=\sqrt{\lambda_{max}(A^HA)} A2=x=0max(xHxxHAHAx)21=λmax(AHA)

7、对任何   A ∈ R n × n   ~A\in\mathbb{R}^{n\times n}~  ARn×n ,   ∥ ∙ ∥   ~\Vert\bullet\Vert~   为任意算子范数,则
ρ ( A ) ≤ ∥ A ∥     ( 对 ∥ A ∥ F 也 成 立 ) \rho(A)\le\Vert A\Vert~~~(对\Vert A\Vert_F也成立) ρ(A)A   (AF)
反之,对任意实数   ε > 0   ~\varepsilon>0~  ε>0 ,至少存在一种算子范数   ∥ ∙ ∥ ε   ~\Vert\bullet\Vert_{\varepsilon}~  ε ,使
∥ A ∥ ε ≤ ρ ( A ) + ε \Vert A\Vert_{\varepsilon}\le\rho(A)+\varepsilon Aερ(A)+ε
证明:设   λ   ~\lambda~  λ    A   ~A~  A 的任一特征值,   x ≠ 0   ~x\neq 0~  x=0 使得   A x = λ x   ~Ax=\lambda x~  Ax=λx ,由相容性条件得
∣ λ ∣ ∥ x ∥ = ∥ λ x ∥ = ∥ A x ∥ ≤ ∥ A ∥ ∥ x ∥ \vert \lambda\vert\Vert x\Vert=\Vert\lambda x\Vert=\Vert Ax\Vert\le\Vert A\Vert\Vert x\Vert λx=λx=AxAx
注意到   ∥ x ∥ ≠ 0   ~\Vert x\Vert\neq 0~  x=0 ,则得   ∣ λ ∣ ≤ ∥ A ∥   ~\vert \lambda\vert\le\Vert A\Vert~  λA ,即   ρ ( A ) ≤ ∥ A ∥   ~\rho(A)\le\Vert A\Vert~  ρ(A)A 
定理后半部分的证明要用到   J o r d a n   ~Jordan~  Jordan 标准型,这个证明会在《矩阵分析》书中出现。

8、如果   A ∈ R n × n   ~A\in\mathbb{R}^{n\times n}~  ARn×n 为对称矩阵,则   ∥ A ∥ 2 = ρ ( A )   ~\Vert A\Vert_2=\rho(A)~  A2=ρ(A) 
证明:   ρ ( A ) = λ m a x A T A   ~\rho(A)=\sqrt{\lambda_{max}A^TA}~  ρ(A)=λmaxATA  ,若   λ 1   ~\lambda_1~  λ1    A   ~A~  A 的谱半径,且A为对称矩阵,则   λ 1 2   ~\lambda_1^2~  λ12    A T A   ~A^TA~  ATA 的特征值,故命题就得证

9、如果   ∥ B ∥ < 1   ~\Vert B\Vert<1~  B<1 ,则   E ± B   ~E\pm B~  E±B 为非奇异矩阵,且
∥ ( E ± B ) − 1 ∥ ≤ 1 1 − ∥ B ∥ \Vert (E\pm B)^{-1}\Vert\le\frac{1}{1-\Vert B\Vert} (E±B)11B1
其中   ∥ ∙ ∥   ~\Vert\bullet\Vert~   是指矩阵的算子范数
证明:其实由   7   ~7~  7 ,我们可知   E ± B   ~E\pm B~  E±B 为非奇异矩阵。
我们在此给出另外一个有意思的证明,采取反证法
  d e t ( E − B ) = 0   ~det(E-B)=0~  det(EB)=0 ,则   ( E − B ) x = 0   ~(E-B)x=0~  (EB)x=0 有非零解,即存在   x 0 ≠ 0   ~x_0\neq 0~  x0=0 使   B x 0 = x 0   ~Bx_0=x_0~  Bx0=x0 ,那么就有   ∥ B x 0 ∥ ∥ x 0 ∥ = 1   ~\frac{\Vert Bx_0\Vert}{\Vert x_0\Vert}=1~  x0Bx0=1 ,故   ∥ B ∥ ≥ 1   ~\Vert B\Vert\ge 1~  B1 ,与假设矛盾.
又由   ( E − B ) ( E − B ) − 1 = E   ~(E-B)(E-B)^{-1}=E~  (EB)(EB)1=E ,从而   ( E − B ) − 1 = E + B ( E − B ) − 1   ~(E-B)^{-1}=E+B(E-B)^{-1}~  (EB)1=E+B(EB)1 ,
从而
∥ ( E ± B ) − 1 ∥ ≤ ∥ E ∥ + ∥ B ∥ ∥ ( E ± B ) − 1 ∥ \Vert (E\pm B)^{-1}\Vert\le\Vert E\Vert+\Vert B\Vert\Vert (E\pm B)^{-1}\Vert (E±B)1E+B(E±B)1
∥ ( E − B ) − 1 ∥ ≤ 1 1 − ∥ B ∥ \Vert (E-B)^{-1}\Vert\le\frac{1}{1-\Vert B\Vert} (EB)11B1

四、范数不等式

1、   C a u c h y − S c h w a r z   ~Cauchy-Schwarz~  CauchySchwarz 不等式:
∣ x T y ∣ ≤ ∥ x ∥ ∥ y ∥ \vert x^Ty\vert\le \Vert x\Vert\Vert y\Vert xTyxy
当且仅当   x   ~x~  x    y   ~y~  y 线性相关时,等号成立.
  C a u c h y − S c h w a r z   ~Cauchy-Schwarz~  CauchySchwarz 不等式其实是   H o l d e r   ~Holder~  Holder 不等式的特例,在此还是证明一下
证明:若   y = 0   ~y=0~  y=0 ,显然成立
  y ≠ 0   ~y\neq 0~  y=0 ,根据内积的定义,则   ( x + t y , x + t y ) ≥ 0   ~(x+ty,x+ty)\ge 0~  (x+ty,x+ty)0 ,对任意的   t   ~t~  t 都成立,则有
( x , x ) + 2 t ( x , y ) + t 2 ( y , y ) ≥ 0 (x,x)+2t(x,y)+t^2(y,y)\ge 0 (x,x)+2t(x,y)+t2(y,y)0
则有   4 ( x , y ) 2 − 4 ( x , x ) ( y , y ) ≤ 0   ~4(x,y)^2-4(x,x)(y,y)\le 0~  4(x,y)24(x,x)(y,y)0 ,从而   ( x , y ) 2 ≤ ( x , x ) ( y , y ) = ∥ x ∥ 2 ∥ y ∥ 2   ~(x,y)^2\le(x,x)(y,y)=\Vert x\Vert^2\Vert y\Vert^2~  (x,y)2(x,x)(y,y)=x2y2 
  x 与 y   ~x与y~  xy 线性相关时,等号显然成立
上面等号成立,要么   y = 0   ~y=0~  y=0 ,要么   x = ( x , y ) ( y , y ) y   ~x=\frac{(x,y)}{(y,y)}y~  x=(y,y)(x,y)y ,即   x   和   y   线 性 相 关   ~x~和~y~线性相关~  x  y 线 
从而命题得证

2、设   A   ~A~  A    n × n   ~n\times n~  n×n 正定矩阵,则
∣ x T A y ∣ ≤ ∥ x ∥ A ∥ y ∥ A \vert x^TAy\vert\le\Vert x\Vert_A\Vert y\Vert_A xTAyxAyA
当且仅当   x   ~x~  x    y   ~y~  y 线性相关时,等式成立
证明:由于正定矩阵一定会合同于单位矩阵,故存在可逆矩阵   P   ~P~  P ,使得   P T A P = E   ~P^TAP=E~  PTAP=E 
对于任意的矩阵   x , y   ~x,y~  x,y ,一定存在   x 1 , y 1   ~x_1,y_1~  x1,y1 ,使得 x = P x 1    , y = P y 1 x=Px_1~~,y=Py_1 x=Px1  ,y=Py1
要证明   ∣ x T A y ∣ ≤ ∥ x ∥ A ∥ y ∥ A   ~\vert x^TAy\vert\le\Vert x\Vert_A\Vert y\Vert_A~  xTAyxAyA ,即是证明   x T A y y T A x ≤ x T A x y T A y   ~x^TAyy^TAx\le x^TAxy^TAy~  xTAyyTAxxTAxyTAy 
代入即是要证明   x 1 T P T A P y 1 y 1 T P T A P x 1 ≤ x 1 T P T A P x 1 y 1 T P T A P y 1   ~x_1^TP^TAPy_1y_1^TP^TAPx_1\le x_1^TP^TAPx_1y_1^TP^TAPy_1~  x1TPTAPy1y1TPTAPx1x1TPTAPx1y1TPTAPy1 
即是要证明   x 1 T y 1 y 1 T x 1 ≤ x 1 T x 1 y 1 T y 1   ~x_1^Ty_1y_1^Tx_1\le x_1^Tx_1y_1^Ty_1~  x1Ty1y1Tx1x1Tx1y1Ty1 
由上面的   C a u c h y − S c h w a r z   ~Cauchy-Schwarz~  CauchySchwarz 不等式,知上面不等式是显然成立的
至于后面的线性相关性和上面的证明一样

3、设   A   ~A~  A    n × n   ~n\times n~  n×n 正定矩阵,则
∣ x T y ∣ ≤ ∥ x ∥ A ∥ x ∥ A − 1 \vert x^Ty\vert\le\Vert x\Vert_A\Vert x\Vert_{A^{-1}} xTyxAxA1
当且仅当   x   ~x~  x    A − 1 y   ~A^{-1}y~  A1y 线性相关时,等号成立
证明;我感觉和上面证明差不多,由于正定矩阵一定会合同于单位矩阵,故存在可逆矩阵   P   ~P~  P ,使得   P T A P = E   ~P^TAP=E~  PTAP=E 
对于任意的矩阵   x , y   ~x,y~  x,y ,一定存在   x 1 , y 1   ~x_1,y_1~  x1,y1 ,使得 x = P x 1    , y = P y 1 x=Px_1~~,y=Py_1 x=Px1  ,y=Py1
要证明   ∣ x T A y ∣ ≤ ∥ x ∥ A ∥ y ∥ A − 1   ~\vert x^TAy\vert\le\Vert x\Vert_A\Vert y\Vert_{A^{-1}}~  xTAyxAyA1 ,即是证明   x T A y y T A x ≤ x T A x y T A − 1 y   ~x^TAyy^TAx\le x^TAxy^TA^{-1}y~  xTAyyTAxxTAxyTA1y 
代入即是要证明   x 1 T P T A P y 1 y 1 T P T A P x 1 ≤ x 1 T P T A P x 1 y 1 T P T A − 1 P y 1   ~x_1^TP^TAPy_1y_1^TP^TAPx_1\le x_1^TP^TAPx_1y_1^TP^TA^{-1}Py_1~  x1TPTAPy1y1TPTAPx1x1TPTAPx1y1TPTA1Py1 
本人太笨了,我也不会证明了

4、(   ~  Young   ~  不等式):假定   p   和   q   ~p~和~q~  p  q 都是大于   1   ~1~  1 的实数,   1 p + 1 q = 1   ~\frac{1}{p}+\frac{1}{q}=1~  p1+q1=1 ,如果   x   ~x~  x    y   ~y~  y 是实数,则
x y ≤ x p p + y q q xy\le \frac{x^p}{p}+\frac{y^q}{q} xypxp+qyq
当且仅当   x p = y q   ~x^p=y^q~  xp=yq 时,等号成立.
证明:令   s = x p ,   t = y q   ~s=x^p,~t=y^q~  s=xp, t=yq ,由算术 − - 几何不等式
x y = s 1 p t 1 q ≤ s p + t q = x p p + y q q xy=s^{\frac{1}{p}}t^{\frac{1}{q}}\le\frac{s}{p}+\frac{t}{q}=\frac{x^p}{p}+\frac{y^q}{q} xy=sp1tq1ps+qt=pxp+qyq
此外,当且仅当   s = t   ~s=t~  s=t 时,即   x p = y q   ~x^p=y^q~  xp=yq ,等式成立
:其中的算术几何不等式的证明,我在这里也不想证明了,方法有两种,一种是在《测度论》课本中利用伯努利不等式,另一种是在《百度百科》中利用琴生不等式。

5、(   ~  Holder   ~  不等式):假定   p   和   q   ~p~和~q~  p  q 都是大于   1   ~1~  1 的实数,   1 p + 1 q = 1   ~\frac{1}{p}+\frac{1}{q}=1~  p1+q1=1 ,如果   x   ~x~  x    y   ~y~  y 是实数,则
∣ x T y ∣ ≤ ∥ x ∥ p ∥ y ∥ q = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ( ∑ i = 1 n ∣ y i ∣ q ) 1 q \vert x^Ty\vert\le\Vert x\Vert_p\Vert y\Vert_q=(\sum_{i=1}^{n}\vert x_i\vert^p)^{\frac{1}{p}}(\sum_{i=1}^n\vert y_i\vert^q)^{\frac{1}{q}} xTyxpyq=(i=1nxip)p1(i=1nyiq)q1
证明:若   x = 0   或   y = 0   ~x=0~或~y=0~  x=0  y=0 ,则不等式显然成立,若   x   ~x~  x    y   ~y~  y 均不为零,记
∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ,    ∥ y ∥ q = ( ∑ i = 1 n ∣ y i ∣ q ) 1 q \Vert x\Vert_p=(\sum_{i=1}^{n}\vert x_i\vert^p)^{\frac{1}{p}},~~\Vert y\Vert_q=(\sum_{i=1}^n\vert y_i\vert^q)^{\frac{1}{q}} xp=(i=1nxip)p1,  yq=(i=1nyiq)q1
  Y o u n g   ~Young~  Young 不等式,有
∣ x i y i ∣ ∥ x ∥ p ∥ y ∥ q ≤ 1 p ∣ x i ∣ p ∥ x ∥ p p + 1 q ∣ y i ∣ q ∥ y ∥ q q ,    i = 1 , 2 … , n \frac{\vert x_iy_i\vert}{\Vert x\Vert_p\Vert y\Vert_q}\le\frac{1}{p}\frac{\vert x_i\vert^p}{\Vert x\Vert_p^p}+\frac{1}{q}\frac{\vert y_i\vert^q}{\Vert y\Vert_q^q},~~i=1,2\dots,n xpyqxiyip1xppxip+q1yqqyiq,  i=1,2,n
上述不等式两边关于   i   ~i~  i 求和,得
1 ∥ x ∥ p ∥ y ∥ q ∑ i = 1 n ∣ x i y i ∣ ≤ 1 p ∥ x ∥ p p ∑ i = 1 n ∣ x i ∣ p + 1 q ∥ x ∥ q q ∑ i = 1 n ∣ x i ∣ q = 1 p + 1 q = 1 \frac{1}{\Vert x\Vert_p\Vert y\Vert_q}\sum_{i=1}^n\vert x_iy_i\vert\le\frac{1}{p\Vert x\Vert_p^p}\sum_{i=1}^n\vert x_i\vert^p+\frac{1}{q\Vert x\Vert_q^q}\sum_{i=1}^n\vert x_i\vert^q=\frac{1}{p}+\frac{1}{q}=1 xpyq1i=1nxiyipxpp1i=1nxip+qxqq1i=1nxiq=p1+q1=1
两边同时乘以   ∥ x ∥ p p ∥ y ∥ q q   ~\Vert x\Vert_p^p\Vert y\Vert_q^q~  xppyqq ,即得结果

6、(   ~  Minkowski   ~  不等式)
∥ x + y ∥ p ≤ ∥ x ∥ p + ∥ y ∥ p \Vert x+y\Vert_p\le\Vert x\Vert_p+\Vert y\Vert_p x+ypxp+yp

( ∑ i = 1 n ∣ x i + y i ∣ p ) 1 p ≤ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p (\sum_{i=1}^n\vert x_i+y_i\vert^p)^\frac{1}{p}\le(\sum_{i=1}^n\vert x_i\vert^p)^\frac{1}{p}+(\sum_{i=1}^n\vert y_i\vert^p)^\frac{1}{p} (i=1nxi+yip)p1(i=1nxip)p1+(i=1nyip)p1
其中,   p > 1   ~p>1~  p>1 
证明:如果   x   ~x~  x    y   ~y~  y 为零向量,则不等式显然成立。故假定   x ≠ 0 , y ≠ 0   ~x\neq 0,y\neq 0~  x=0,y=0 
  p = 1   ~p=1~  p=1 ,由于   ∣ x i + y i ∣ ≤ ∣ x i ∣ + ∣ y i ∣ ,    i = 1 , 2 , … , n   ~\vert x_i+y_i\vert\le\vert x_i\vert+\vert y_i\vert,~~i=1,2,\dots,n~  xi+yixi+yi,  i=1,2,,n ,则得结果
现设   p > 1   ~p>1~  p>1 ,考虑函数
ϕ ( t ) = t p ,     t > 0 \phi(t)=t^p,~~~t>0 ϕ(t)=tp,   t>0
由于
ϕ ′ ′ ( t ) = p ( p − 1 ) t p − 2 > 0 \phi^{''}(t)=p(p-1)t^{p-2}>0 ϕ(t)=p(p1)tp2>0
故函数   ϕ ( t )   ~\phi(t)~  ϕ(t) 是严格凸的.   ~  注意到
∥ x ∥ p ∥ x ∥ p + ∥ y ∥ p + ∥ y ∥ p ∥ x ∥ p + ∥ y ∥ p = 1 \frac{\Vert x\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}+\frac{\Vert y\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}=1 xp+ypxp+xp+ypyp=1
于是,由凸函数的定义得到
( ∥ x ∥ p ∥ x ∥ p + ∥ y ∥ p ∣ x i ∣ ∥ x ∥ p + ∥ y ∥ p ∥ x ∥ p + ∥ y ∥ p ∣ y i ∣ ∥ y ∥ p ) p ≤ ∥ x ∥ p ∥ x ∥ p + ∥ y ∥ p ( ∣ x i ∣ ∥ x ∥ p ) p + ∥ y ∥ p ∥ x ∥ p + ∥ y ∥ p ( ∣ y i ∣ ∥ y ∥ p ) p \begin{aligned}&(\frac{\Vert x\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}\frac{\vert x_i\vert}{\Vert x\Vert_p}+\frac{\Vert y\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}\frac{\vert y_i\vert}{\Vert y\Vert_p})^p\\ &\le\frac{\Vert x\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}(\frac{\vert x_i\vert}{\Vert x\Vert_p})^p+\frac{\Vert y\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}(\frac{\vert y_i\vert}{\Vert y\Vert_p})^p \end{aligned} (xp+ypxpxpxi+xp+ypypypyi)pxp+ypxp(xpxi)p+xp+ypyp(ypyi)p
因此,
∑ i = 1 n ( ∣ x i + y i ∣ ∥ x ∥ p + ∥ y ∥ p ) p ≤ ∑ i = 1 n ( ∣ x i ∥ + ∥ y i ∣ ∥ x ∥ p + ∥ y ∥ p ) p ≤ ∑ i = 1 n ( ∥ x ∥ p ∥ x ∥ p + ∥ y ∥ p ( ∣ x i ∣ ∥ x ∥ p ) p + ∥ y ∥ p ∥ x ∥ p + ∥ y ∥ p ( ∣ y i ∣ ∥ y ∥ p ) p ) = ∥ x ∥ p ∥ x ∥ p + ∥ y ∥ p ∑ i = 1 n ( ∣ x i ∣ ∥ x ∥ p ) p + ∥ y ∥ p ∥ x ∥ p + ∥ y ∥ p ∑ i = 1 n ( ∣ y i ∣ ∥ y ∥ p ) p = ∥ x ∥ p ∥ x ∥ p + ∥ y ∥ p ∥ x ∥ p p ∥ x ∥ p p + ∥ y ∥ p ∥ x ∥ p + ∥ y ∥ p ∥ x ∥ p p ∥ x ∥ p p = 1 \begin{aligned} &\sum_{i=1}^n(\frac{\vert x_i+y_i\vert}{\Vert x\Vert_p+\Vert y\Vert_p})^p\le\sum_{i=1}^n(\frac{\vert x_i\Vert+\Vert y_i\vert}{\Vert x\Vert_p+\Vert y\Vert_p})^p\\ &\le\sum_{i=1}^n(\frac{\Vert x\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}(\frac{\vert x_i\vert}{\Vert x\Vert_p})^p+\frac{\Vert y\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}(\frac{\vert y_i\vert}{\Vert y\Vert_p})^p)\\ &=\frac{\Vert x\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}\sum_{i=1}^n(\frac{\vert x_i\vert}{\Vert x\Vert_p})^p+\frac{\Vert y\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}\sum_{i=1}^n(\frac{\vert y_i\vert}{\Vert y\Vert_p})^p\\ &=\frac{\Vert x\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}\frac{\Vert x\Vert_p^p}{\Vert x\Vert_p^p}+\frac{\Vert y\Vert_p}{\Vert x\Vert_p+\Vert y\Vert_p}\frac{\Vert x\Vert_p^p}{\Vert x\Vert_p^p}\\ &=1 \end{aligned} i=1n(xp+ypxi+yi)pi=1n(xp+ypxi+yi)pi=1n(xp+ypxp(xpxi)p+xp+ypyp(ypyi)p)=xp+ypxpi=1n(xpxi)p+xp+ypypi=1n(ypyi)p=xp+ypxpxppxpp+xp+ypypxppxpp=1
这样,我们得到
∑ i = 1 n ∣ x + y i ∣ p ≤ ( ∥ x ∥ p + ∥ y ∥ p ) p \sum_{i=1}^n\vert x_+y_i\vert^p\le(\Vert x\Vert_p+\Vert y\Vert_p)^p i=1nx+yip(xp+yp)p
上式两边取   p   ~p~  p 次根即得结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多情剑客无情剑yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值