2021年合肥工业大学《高等代数》试题和答案(蔡宇编辑)

1、(16分)已知方阵
A = ( − 1 1 1 1 1 − 1 1 1 1 1 − 1 1 1 1 1 − 1 ) A=\begin{pmatrix} -1&1&1&1\\ 1&-1&1&1\\ 1&1&-1&1\\ 1&1&1&-1 \end{pmatrix} A=1111111111111111
  ∣ A ∣   ~\vert A\vert~  A 中第   i   ~i~  i 行第   j   ~j~  j 列的代数余子式为   A i j   ~A_{ij}~  Aij ,求   ∑ i , j = 1 4 A i j   ~\sum\limits_{i,j=1}^{4}A_{ij}~  i,j=14Aij .

:其实这是一道课本习题的简单应用,过程就不再详细写了.
∣ A ∣ = ∣ − 1 1 1 1 1 − 1 1 1 1 1 − 1 1 1 1 1 − 1 ∣ = − 16 \vert A\vert=\begin{vmatrix} -1&1&1&1\\ 1&-1&1&1\\ 1&1&-1&1\\ 1&1&1&-1 \end{vmatrix}=-16 A=1111111111111111=16
我们直接构造一个矩阵   B   ~B~  B ,算   B   ~B~  B 的行列式
∣ B ∣ = ∣ 0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 0 ∣ = − 48 \vert B\vert=\begin{vmatrix} 0&2&2&2\\ 2&0&2&2\\ 2&2&0&2\\ 2&2&2&0 \end{vmatrix}=-48 B=0222202222022220=48
  ∑ i , j = 1 4 A i j = ∣ B ∣ − ∣ A ∣ = − 32   ~\sum\limits_{i,j=1}^{4}A_{ij}=\vert B\vert-\vert A\vert=-32~  i,j=14Aij=BA=32 


2、(16分)已知   P   ~P~  P 为数域,   f ( x ) , g ( x ) ∈ P [ x ] , A ∈ P n × n   ~f(x),g(x)\in P[x],A\in P^{n\times n}~  f(x),g(x)P[x],APn×n ,且   ( f ( x ) , g ( x ) ) = 1   ~(f(x),g(x))=1~  (f(x),g(x))=1 ,   f ( A ) g ( A ) = O   ~f(A)g(A)=O~  f(A)g(A)=O ,证明:   R ( f ( A ) ) + R ( f ( A ) ) = n   ~R(f(A))+R(f(A))=n~  R(f(A))+R(f(A))=n .
其中   R ( f ( A ) ) , R ( f ( A ) )   ~R(f(A)),R(f(A))~  R(f(A)),R(f(A)) 表示   f ( A ) , g ( A )   ~f(A),g(A)~  f(A),g(A) 的秩

:由   f ( A ) g ( A ) = 0   ~f(A)g(A)=0~  f(A)g(A)=0 ,可知   R ( f ( A ) ) + R ( f ( A ) ) ≤ n   ~R(f(A))+R(f(A))\le n~  R(f(A))+R(f(A))n 
  ( f ( x ) , g ( x ) ) = 1   ~(f(x),g(x))=1~  (f(x),g(x))=1 可知,存在   μ ( x ) , ν ( x ) ∈ P [ x ]   ~\mu(x),\nu(x)\in P[x]~  μ(x),ν(x)P[x] ,使得
μ ( x ) f ( x ) + ν ( x ) g ( x ) = 1 \mu(x)f(x)+\nu(x)g(x)=1 μ(x)f(x)+ν(x)g(x)=1
把矩阵   A   ~A~  A 代入上式,即有
μ ( A ) f ( A ) + ν ( A ) g ( A ) = E \mu(A)f(A)+\nu(A)g(A)=E μ(A)f(A)+ν(A)g(A)=E
根据矩阵秩的关系,我们有
n = R ( E ) = R ( μ ( A ) f ( A ) + ν ( A ) g ( A ) ) ≤ R ( μ ( A ) f ( A ) ) + R ( ν ( A ) g ( A ) ) ≤ R ( f ( A ) ) + R ( g ( A ) ) n=R(E)=R(\mu(A)f(A)+\nu(A)g(A))\le R(\mu(A)f(A))+R(\nu(A)g(A))\le R(f(A))+R(g(A)) n=R(E)=R(μ(A)f(A)+ν(A)g(A))R(μ(A)f(A))+R(ν(A)g(A))R(f(A))+R(g(A))
故命题得证


3、(16分)设线性方程组
{ x 1 + x 2 + x 3 = 0 x 1 + 2 x 2 + α x 3 = 0 x 1 + 4 x 2 + α 2 x 3 = 0 \begin{cases} x_1+x_2+x_3=0\\ x_1+2x_2+\alpha x_3=0\\ x_1+4x_2+\alpha^2x_3=0 \end{cases} x1+x2+x3=0x1+2x2+αx3=0x1+4x2+α2x3=0
与方程   x 1 + 2 x 2 + x 3 = α − 1   ~x_1+2x_2+x_3=\alpha-1~  x1+2x2+x3=α1 有公共解,求参数   α   ~\alpha~  α 的值及所有公共解

:由于方程   x 1 + 2 x 2 + x 3 = α − 1   ~x_1+2x_2+x_3=\alpha-1~  x1+2x2+x3=α1 一定有非零解
并且线性方程组的系数矩阵的行列式是范德蒙德行列式,要使该方程组有非零解,只能是   α = 1 或 者 α = 2   ~\alpha=1或者\alpha=2~  α=1α=2 ,所以我们只是需要考虑这两种情况即可
(1)、当   α = 1   ~\alpha=1~  α=1 
公共解   x = k ( 1 , 0 , − 1 ) T   ~x=k(1,0,-1)^T~  x=k(1,0,1)T ,其中   k   ~k~  k 为任意数
(1)、当   α = 2   ~\alpha=2~  α=2 
公共解   x = ( 0 , 1 , − 1 ) T   ~x=(0,1,-1)^T~  x=(0,1,1)T ,这是唯一解


4、(16分)设3元实二次型   f ( x , y , z ) = t ( x 2 + y 2 + z 2 ) + 3 y 2 − 4 x y − 2 x z + 4 y z   ~f(x,y,z)=t(x^2+y^2+z^2)+3y^2-4xy-2xz+4yz~  f(x,y,z)=t(x2+y2+z2)+3y24xy2xz+4yz 
(1)、当   t   ~t~  t 取何值时,   f ( x , y , z )   ~f(x,y,z)~  f(x,y,z) 为正定二次型
(2)、当   t   ~t~  t 取何值时,   f ( x , y , z )   ~f(x,y,z)~  f(x,y,z) 为半负定二次型
(3)、当   t   ~t~  t 取何值时,   f ( x , y , z )   ~f(x,y,z)~  f(x,y,z) 为某一个实二次多项式的平方



5、(16分)    ~~   记全体正实数组成的集合为   R +   ~\mathbb{R}^+~  R+ ,并用   R   ~\mathbb{R}~  R 表示实数域.设   a , b ∈ R + , k ∈ R   ~a,b\in\mathbb{R}^+,k\in\mathbb{R}~  a,bR+,kR ,定义加法和数乘运算
a ⊕ b = a b ,    k ∘ a = a k a\oplus b=ab,~~k\circ a=a^k ab=ab,  ka=ak
(1)    ~~   证明   R +   ~\mathbb{R}^+~  R+ 在如上加法与数乘下构成实数域上的线性空间
(2)    ~~      R +   ~\mathbb{R}^+~  R+ 的维数和一组基

:(1)    ~~   要证明实数域上的集合 R + \mathbb{R}^+ R+在定义的两种运算   ⊕ 和 ∘   ~\oplus和\circ~   是否构成线性空间,下面我们先简要说一下两种运算对于 R + \mathbb{R}^+ R+集合是封闭的
1、对任意的   a , b ∈ R + ~a,b\in\mathbb{R}^+  a,bR+,   a ⊕ b = a b ∈ R +   ~a\oplus b=ab\in\mathbb{R}^+~  ab=abR+ 
2、对任意的   a ∈ R + ~a\in\mathbb{R}^+  aR+ k ∈ R   k\in\mathbb{R}~ kR ,   k ∘ a = a k ∈ R +   ~k\circ a=a^k\in\mathbb{R}^+~  ka=akR+ 
现证明是否满足线性空间的八条性质
下面四条是集合 R + \mathbb{R}^+ R+对运算   ⊕   ~\oplus~   的性质
1、(交换律)    ~~   对任意的   a , b ∈ R + ~a,b\in\mathbb{R}^+  a,bR+   a ⊕ b = b ⊕ a   ~a\oplus b=b\oplus a~  ab=ba 
2、(结合律)    ~~   对任意的   a , b , c ∈ R + ~a,b,c\in\mathbb{R}^+  a,b,cR+   ( a ⊕ b ) ⊕ c = a ⊕ ( b ⊕ c ) = a b c   ~(a\oplus b)\oplus c=a\oplus(b\oplus c)=abc ~  (ab)c=a(bc)=abc 
3、(零元律)    ~~   存在   1 ∈ R +   ~1\in\mathbb{R}^+~  1R+ ,对任意的   a ∈ R +   ~a\in\mathbb{R}^+~  aR+ ,都有   1 ⊕ a = a   ~1\oplus a=a~  1a=a 
4、(逆元律)    ~~   对任意的   a ∈ R + ~a\in\mathbb{R}^+  aR+,都存在   1 a ∈ R + ~\frac{1}{a}\in\mathbb{R}^+  a1R+,使得   a ⊕ 1 a = 1   ~a\oplus\frac{1}{a}=1~  aa1=1 
以下是两种集合对于   ⊕ 和 ∘   ~\oplus和\circ~   共同的性质
5、   ~  存在   1 ∈ R   ~1\in\mathbb{R}~  1R ,对任意的   a ∈ R +   ~a\in\mathbb{R}^+~  aR+ ,都有   1 ∘ a = a   ~1\circ a=a~  1a=a 
6、对任意的   k , l ∈ R   ~k,l\in\mathbb{R}~  k,lR ,任意的   a ∈ R +   ~a\in\mathbb{R}^+~  aR+ ,有   k ∘ ( l ∘ a ) = k ∘ ( a l ) = a l k = ( k l ) ∘ a   ~k\circ(l\circ a)=k\circ(a^l)=a^{lk}=(kl)\circ a~  k(la)=k(al)=alk=(kl)a 
7、对任意的   k , l ∈ R   ~k,l\in\mathbb{R}~  k,lR ,任意的   a ∈ R +   ~a\in\mathbb{R}^+~  aR+ ,有   ( k + l ) ∘ a = a k + l = a k a l = ( k ∘ a ) ⊕ ( l ∘ a )   ~(k+l)\circ a=a^{k+l}=a^ka^l=(k\circ a)\oplus(l\circ a)~  (k+l)a=ak+l=akal=(ka)(la) 
8、对任意的   k ∈ R   ~k\in\mathbb{R}~  kR ,对任意的   a , b ∈ R + ~a,b\in\mathbb{R}^+  a,bR+,有   k ∘ ( a ⊕ b ) = ( a b ) k = a k b k = ( k ∘ a ) ⊕ ( k ∘ b )   ~k\circ(a\oplus b)=(ab)^k=a^kb^k=(k\circ a)\oplus(k\circ b)~  k(ab)=(ab)k=akbk=(ka)(kb) 
经上分析,我们可知   R +   ~\mathbb{R}^+~  R+ 在如上加法与数乘下构成实数域上的线性空间

(2)、对任意的   a , b ∈ R + ~a,b\in\mathbb{R}^+  a,bR+,一定有   k , l ∈ R   ~k,l\in\mathbb{R}~  k,lR ,使得 ( k ∘ a ) ⊕ ( l ∘ b ) = 1    (k\circ a) \oplus(l\circ b)=1~~ (ka)(lb)=1  ,显然 k = l = 0 k=l=0 k=l=0,左式就成立,对于一旦给定   a , b ∈ R + ~a,b\in\mathbb{R}^+  a,bR+,显然它一定有非零解   k , l   ~k,l~  k,l ,这一点非常重要。又由于   R +   ~\mathbb{R}^+~  R+ 为非空集合,对于任意的两个元素都是线性相关,所以   d i m ( R + ) = 1   ~dim(\mathbb{R}^+)=1~  dim(R+)=1 ,其基可以为任意非1正实数(因为1是该线性空间的零元)。


6、(16分)   ~     V   ~V~  V 是数域   P   ~P~  P 上的有限维线性空间,   W   ~W~  W    V   ~V~  V 的一个子空间,   A   ~\mathscr{A}~  A    V   ~V~  V 上的线性变换,证明
d i m A ( W ) + d i m ( A − 1 ( 0 ) ∩ W ) = d i m W dim\mathscr{A}(W)+dim(\mathscr{A}^{-1}(0)\cap W)=dim W dimA(W)+dim(A1(0)W)=dimW
其中   A ( W ) = { A α ∣ α ∈ W }   ~\mathscr{A}(W)=\left\{\mathscr{A} \alpha|\alpha\in W\right\}~  A(W)={AααW} 

证明:不妨设   d i m ( A − 1 ( 0 ) ∩ W ) = t   ~dim(\mathscr{A}^{-1}(0)\cap W)=t~  dim(A1(0)W)=t ,   d i m W = t + s   ~dim W=t+s~  dimW=t+s ,
  A − 1 ( 0 ) ∩ W   ~\mathscr{A}^{-1}(0)\cap W~  A1(0)W 的一组基为   α 1 , α 2 , … , α t   ~\alpha_1,\alpha_2,\dots,\alpha_t~  α1,α2,,αt ,将其扩充成   W   ~W~  W 的一组基    α 1 , α 2 , … , α t , β 1 , β 2 , … , β s   ~~\alpha_1,\alpha_2,\dots,\alpha_t,\beta_1,\beta_2,\dots,\beta_s~   α1,α2,,αt,β1,β2,,βs ,现在我们只是需要证明   A ( β 1 ) , A ( β 2 ) , … , A ( β s )   ~\mathscr{A}(\beta_1),\mathscr{A}(\beta_2),\dots,\mathscr{A}(\beta_s)~  A(β1),A(β2),,A(βs)    A W   ~\mathscr{A} W~  AW 的一组基.
现在   A W   ~\mathscr{A} W~  AW 的任意元素都能够由   A β 1 , A β 2 , … , A β s   ~\mathscr{A}\beta_1,\mathscr{A}\beta_2,\dots,\mathscr{A}\beta_s~  Aβ1,Aβ2,,Aβs 线性表出
对任意的   v ∈ A W   ~v\in\mathscr{A} W~  vAW ,一定存在   u ∈ W   ~u\in W~  uW ,使得   A u = v   ~\mathscr{A} u=v~  Au=v ,由于   u ∈ W   ~u\in W~  uW ,故一定存在   k 1 , k 2 , … , k t , l 1 , l 2 , … , l s ∈ P   ~k_1,k_2,\dots,k_t,l_1,l_2,\dots,l_s\in P~  k1,k2,,kt,l1,l2,,lsP ,使得
u = k 1 α 1 + k 2 α 2 ⋯ + k t α t + l 1 β 1 + l 2 β 2 ⋯ + l s β s u=k_1\alpha_1+k_2\alpha_2\dots+k_t\alpha_t+l_1\beta_1+l_2\beta_2\dots+l_s\beta_s u=k1α1+k2α2+ktαt+l1β1+l2β2+lsβs
A u = A ( k 1 α 1 + k 2 α 2 ⋯ + k t α t + l 1 β 1 + l 2 β 2 ⋯ + l s β s ) = k 1 A α 1 + k 2 A α 2 ⋯ + k t A α t + l 1 A β 1 + l 2 A β 2 ⋯ + l s A β s = l 1 A β 1 + l 2 A β 2 ⋯ + l s A β s \begin{aligned} \mathscr{A} u &=\mathscr{A}(k_1\alpha_1+k_2\alpha_2\dots+k_t\alpha_t+l_1\beta_1+l_2\beta_2\dots+l_s\beta_s)\\&=k_1\mathscr{A}\alpha_1+k_2\mathscr{A}\alpha_2\dots+k_t\mathscr{A}\alpha_t+l_1\mathscr{A}\beta_1+l_2\mathscr{A}\beta_2\dots+l_s\mathscr{A}\beta_s\\ &=l_1\mathscr{A}\beta_1+l_2\mathscr{A}\beta_2\dots+l_s\mathscr{A}\beta_s \end{aligned} Au=A(k1α1+k2α2+ktαt+l1β1+l2β2+lsβs)=k1Aα1+k2Aα2+ktAαt+l1Aβ1+l2Aβ2+lsAβs=l1Aβ1+l2Aβ2+lsAβs
  A W   ~\mathscr{A} W~  AW 任意元素可由   A β 1 , A β 2 , … , A β s   ~\mathscr{A}\beta_1,\mathscr{A}\beta_2,\dots,\mathscr{A}\beta_s~  Aβ1,Aβ2,,Aβs 线性表出

下证   A β 1 , A β 2 , … , A β s   ~\mathscr{A}\beta_1,\mathscr{A}\beta_2,\dots,\mathscr{A}\beta_s~  Aβ1,Aβ2,,Aβs 线性无关
存在   p 1 , p 2 , … , p s   ~p_1,p_2,\dots,p_s~  p1,p2,,ps ,使得   p 1 A β 1 + p 2 A β 2 + ⋯ + p s A β s = 0   ~p_1\mathscr{A}\beta_1+p_2\mathscr{A}\beta_2+\dots+p_s\mathscr{A}\beta_s=0~  p1Aβ1+p2Aβ2++psAβs=0 
  A ( p 1 β 1 + p 2 β 2 + ⋯ + p s β s ) = 0   ~\mathscr{A}(p_1\beta_1+p_2\beta_2+\dots+p_s\beta_s)=0~  A(p1β1+p2β2++psβs)=0 ,根据前面,   α 1 , α 2 , … , α t   ~\alpha_1,\alpha_2,\dots,\alpha_t~  α1,α2,,αt    A − 1 ( 0 ) ∩ W   ~\mathscr{A}^{-1}(0)\cap W~  A1(0)W 的一组基,那么存在   q 1 , q 2 , … , q t   ~q_1,q_2,\dots,q_t~  q1,q2,,qt 使得
p 1 β 1 + p 2 β 2 + ⋯ + p s β s = q 1 α 1 + q 2 α 2 + ⋯ + q t α t p_1\beta_1+p_2\beta_2+\dots+p_s\beta_s=q_1\alpha_1+q_2\alpha_2+\dots+q_t\alpha_t p1β1+p2β2++psβs=q1α1+q2α2++qtαt
最后依据    α 1 , α 2 , … , α t , β 1 , β 2 , … , β s   ~~\alpha_1,\alpha_2,\dots,\alpha_t,\beta_1,\beta_2,\dots,\beta_s~   α1,α2,,αt,β1,β2,,βs    W   ~W~  W 的一组基,我们知   p 1 = p 2 = ⋯ = p s = 0   ~p_1=p_2=\dots=p_s=0~  p1=p2==ps=0 ,故   A β 1 , A β 2 , … , A β s   ~\mathscr{A}\beta_1,\mathscr{A}\beta_2,\dots,\mathscr{A}\beta_s~  Aβ1,Aβ2,,Aβs 线性无关
命题得证

7、(16分)设矩阵
A = ( a 0 b 3 c 5 1 − b − 1 − a ) A=\begin{pmatrix} a&0&b\\ 3&c&5\\ 1-b&-1&-a \end{pmatrix} A=a31b0c1b5a
满足   ∣ A ∣ = − 1   ~\vert A\vert=-1~  A=1 ,   λ 0   ~\lambda_0~  λ0    A   ~A~  A 的伴随矩阵   A ∗   ~A^*~  A 的一个特征值.   ξ 0 = ( 1 , − 1 , − 1 ) ′   ~\xi_0=(1,-1,-1)'~  ξ0=(1,1,1)  A ∗ A^* A属于特征值   λ 0   ~\lambda_0~  λ0 的一个特征向量
(1)、求   a , b , c 及   λ 0   ~a,b,c及~\lambda_0~  a,b,c λ0 的值
(2)、判断   A   ~A~  A 是否可以对角化

解:(1)、设   λ   ~\lambda~  λ    A   ~A~  A 的非零特征值,   ξ   ~\xi~  ξ 为其对应 特征向量,即有   A ξ = λ ξ   ~A\xi=\lambda\xi~  Aξ=λξ ,
则有   A ∗ ξ = ∣ A ∣ λ − 1 ξ   ~A^*\xi=\frac{\vert A\vert}{\lambda^-1}\xi~  Aξ=λ1Aξ ,故.   ξ 0 = ( 1 , − 1 , − 1 ) ′   ~\xi_0=(1,-1,-1)'~  ξ0=(1,1,1) 也为   A   ~A~  A 的特征向量,不妨设其对应的特征值为   k   ~k~  k ,则有   A ξ 0 = k ξ 0   ~A\xi_0=k\xi_0~  Aξ0=kξ0 ,即
( a 0 b 3 c 5 1 − b − 1 − a ) ( 1 − 1 − 1 ) = k ( 1 − 1 − 1 ) \begin{pmatrix} a&0&b\\ 3&c&5\\ 1-b&-1&-a \end{pmatrix} \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}=k\begin{pmatrix} 1\\-1\\-1 \end{pmatrix} a31b0c1b5a111=k111
有关系
{ a − b = k − c − 2 = − k 2 + a − b = − k \left\{ \begin{aligned} &a-b=k\\ &-c-2=-k\\ &2+a-b=-k \end{aligned} \right. ab=kc2=k2+ab=k
同时有   ∣ A ∣ = − 1   ~\vert A\vert=-1~  A=1 ,上述工程我就不详细计算了,最终我们得到   a = − 2 , b = − 1 , c = − 3 , k = − 1   ~a=-2,b=-1,c=-3,k=-1~  a=2,b=1,c=3,k=1 
故有   λ 0 = 1   ~\lambda_0 =1~  λ0=1 
(2)、由上我们可知矩阵
A = ( − 2 0 − 1 3 − 3 5 2 − 1 2 ) A=\begin{pmatrix} -2&0&-1\\ 3&-3&5\\ 2&-1&2 \end{pmatrix} A=232031152
计算   A   ~A~  A 的特征值,我们知道   λ = − 1 ( 3 重 特 征 值 )   ~\lambda=-1(3重特征值)~  λ=1(3) ,而   r ( A + E ) = 2   ~r(A+E)=2~  r(A+E)=2 ,故   A   ~A~  A 不能相似对角化


8、(14分)设   A   ~A~  A    n   ~n~  n 阶正定矩阵,在实线性空间   R n   ~\mathbb{R}^n~  Rn 定义二元函数   [ α , β ] = α T A β , α , β ∈ R n   ~[\alpha,\beta]=\alpha^TA\beta,\alpha,\beta\in\mathbb{R}^n~  [α,β]=αTAβ,α,βRn 
(1)、证明   [ α , β ]   ~[\alpha,\beta]~  [α,β]    R n   ~\mathbb{R}^n~  Rn 上的内积
(2)、当   A = ( 2 1 − 1 1 2 1 1 1 2 ) ~A=\begin{pmatrix} 2&1&-1\\ 1&2&1\\ 1&1&2 \end{pmatrix}  A=211121112时,求单位向量与   α 1 = ( 1 , 0 , 0 ) T , α 2 = ( 0 , 1 , 0 ) T   ~\alpha_1=(1,0,0)^T,\alpha_2=(0,1,0)^T~  α1=(1,0,0)T,α2=(0,1,0)T 都正交(在以上内积下)

证明:(1)证明过程不再叙述了,很简单,只是需要证明内积的四条性质(对称性,齐次性,线性,非负性)即可,只是提醒一下,这里务必要求   A   ~A~  A 为正定矩阵。
(2)、感觉这一问更简单,按照定义算一下,我个人算出一个向量   β = ( 1 , 1 , − 3 )   ~\beta=(1,1,-3)~  β=(1,1,3)    α 1 = ( 1 , 0 , 0 ) T , α 2 = ( 0 , 1 , 0 ) T   ~\alpha_1=(1,0,0)^T,\alpha_2=(0,1,0)^T~  α1=(1,0,0)T,α2=(0,1,0)T 都正交,最后单位化,这里要注意,单位化的时候,我们还是用上面定义的内积,单位化之后是   ( 1 2 ( 3 ) ) , 1 2 ( 3 ) ) , − 3 2 ( 3 ) )   ~(\frac{1}{2\sqrt(3)}),\frac{1}{2\sqrt(3)}),\frac{-3}{2\sqrt(3)})~  (2( 3)1),2( 3)1),2( 3)3) 


9、(14分)设   V   ~V~  V 是数域   P   ~P~  P 上的   n   ~n~  n 线性空间,   A   ~\mathscr{A}~  A    V   ~V~  V 上的线性变换,且   A ( V ) = A − 1 ( 0 )   ~\mathscr{A}(V)=\mathscr{A}^{-1}(0)~  A(V)=A1(0) ,其中   A ( V ) , A − 1 ( 0 )   ~\mathscr{A}(V),\mathscr{A}^{-1}(0)~  A(V),A1(0) 分别表示   A   ~\mathscr{A}~  A 的值域与核空间.
(1)    ~~   证明:   n   ~n~  n 为偶数
(2)    ~~   证明:存在   V   ~V~  V 的一组基,使得   A   ~\mathscr{A}~  A 在这组基下的矩阵为   ( O E n 2 O O )   ~\begin{pmatrix}O&E_{\frac{n}{2}}\\O&O\end{pmatrix}~  (OOE2nO) .
证明:(1)    ~~   根据线性变换的维数公式,这是显然的.
  A   ~\mathscr{A}~  A 是线性空间   V   ~V~  V 上的线性变换,则有   d i m ( V ) = d i m A ( V ) + d i m A − 1 ( 0 ) ~dim(V)=dim\mathscr{A}(V)+dim\mathscr{A}^{-1}(0)  dim(V)=dimA(V)+dimA1(0)
(2)、感觉是很显然的,但是数学需要严谨证明。
我们可以对   V   ~V~  V 中的基进行分类,设   α 1 , α 2 , … , α s , β 1 , β 2 , … , β t   ~\alpha_1,\alpha_2,\dots,\alpha_s,\beta_1,\beta_2,\dots,\beta_t~  α1,α2,,αs,β1,β2,,βt    V   ~V~  V 中的一组基,
其中   A ( V ) = < A ( α 1 ) , A ( α 2 ) , … , A ( α s ) >   ~\mathscr{A}(V)=<\mathscr{A}(\alpha_1),\mathscr{A}(\alpha_2),\dots,\mathscr{A}(\alpha_s)>~  A(V)=<A(α1),A(α2),,A(αs)> ,而   A − 1 ( 0 ) = < β 1 , β 2 , … , β t >   ~\mathscr{A}^{-1}(0)=<\beta_1,\beta_2,\dots,\beta_t>~  A1(0)=<β1,β2,,βt> 
由(1)可知,   s = t = n 2   ~s=t=\frac{n}{2}~  s=t=2n ,
现在我们就依据   A ( V ) = A − 1 ( 0 )   ~\mathscr{A}(V)=\mathscr{A}^{-1}(0)~  A(V)=A1(0) ,证明   α 1 , α 2 , … , α s , A ( α 1 ) , A ( α 2 ) , … , A ( α s )   ~\alpha_1,\alpha_2,\dots,\alpha_s,\mathscr{A}(\alpha_1),\mathscr{A}(\alpha_2),\dots,\mathscr{A}(\alpha_s)~  α1,α2,,αs,A(α1),A(α2),,A(αs) 构成   V   ~V~  V 中的一组基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多情剑客无情剑yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值