2021中国科学技术大学《高等代数》试题与答案——解题人(蔡宇)

1、填空题(每空5分,共40分,需化简答案)
(1)、已知空间中三个定点
A(1,1,1),    ~~   B(2,1,2),    ~~   C(1,-1,0)
则三角形   △ A B C   ~\vartriangle ABC~  ABC 的面积为     ‾ ~\underline~   
已知   ( 0 , α , 1 )   ~(0,\alpha,1)~  (0,α,1)    A , B , C   ~A,B,C~  A,B,C 共面,则   a =   ~a=_~  a= 

;主要考察向量的知识(向量的外积与向量的线性相关性)
S △ A B C = 1 2 ∣ A B ⃗ × A C ⃗ ∣ = 1 2 ∣   ( 1 , 0 , 1 ) × ( 0 , − 2 , − 1 ) ∣ = 1 2 ∣ ( 2 , 1 , − 2 ) ∣ = 3 2 \begin{aligned} S_{\vartriangle ABC}&=\frac{1}{2}\vert \vec{AB}\times\vec{AC}\vert\\ &=\frac{1}{2}\vert\ (1,0,1)\times (0,-2,-1)\vert\\ &=\frac{1}{2}\vert (2,1,-2)\vert\\ &=\frac{3}{2} \end{aligned} SABC=21AB ×AC =21 (1,0,1)×(0,2,1)=21(2,1,2)=23
  ( 0 , α , 1 )   ~(0,\alpha,1)~  (0,α,1)    D   ~D~  D 点,即是   D   ~D~  D 点与   A , B , C   ~A,B,C~  A,B,C 共面
  A D ⃗   ~\vec{AD}~  AD  与向量   A B ⃗   ~\vec{AB}~  AB  ,   A C ⃗   ~\vec{AC}~  AC  线性相关
那么   A D ⃗   ~\vec{AD}~  AD  可由向量   A B ⃗   ~\vec{AB}~  AB  ,   A C ⃗   ~\vec{AC}~  AC  线性表出
很容易解的   α = 3   ~\alpha=3~  α=3 

2、空间中直线   l 1 : x − 1 = 2 − y = z   ~l_1:x-1=2-y=z~  l1:x1=2y=z    l 2 : y = z = 0   ~l_2:y=z=0~  l2:y=z=0 旋转所得的选择面的一般方程为

注:这应该是解析几何的内容吧,不过本人大学是金融专业的,没有学过解析几何,等我看一下解析几何,以后再做吧。

3、方阵 A = ( 1 0 1 1 3 1 1 1 0 0 1 0 0 0 2 1 ) A=\begin{pmatrix}1&0&1&1\\3&1&1&1\\0&0&1&0\\0&0&2&1\end{pmatrix} A=1300010011121101的逆为 ( 1 0 1 − 1 − 3 1 − 2 2 0 0 1 0 0 0 − 2 1 ) \begin{pmatrix}1&0&1&-1\\-3&1&-2&2\\0&0&1&0\\0&0&-2&1\end{pmatrix} 1300010012121201,
行列式   d e t ( I n 2 I n 2 I n 2 I n ) = ( − 2 ) n   ~det\begin{pmatrix}I_n&2I_n\\2I_n&2I_n\end{pmatrix}=(-2)^n~  det(In2In2In2In)=(2)n ,其中   I n   ~I_n~  In    n   ~n~  n 阶单位矩阵

4、已知实系数二次型   2 x 2 + 2 y 2 + 2 z 2 − x y − b y z   ~2x^2+2y^2+2z^2-xy-byz~  2x2+2y2+2z2xybyz 是正定的,则系数   b   ~b~  b 的取值范围是(-2 3 \sqrt{3} 3 ,2 3 \sqrt{3} 3 )

5、设 A = ( 5 1 1 9 8 3 2 7 3 ) A=\begin{pmatrix}5&1&1\\9&8&3\\2&7&3\end{pmatrix} A=592187133   ∣ A ∣   ~\vert A \vert~  A 第二行元素的代数余子式为   A 21 , A 22 , A 23   ~A_{21},A_{22},A_{23}~  A21,A22,A23 ,
  A 21 − A 22 + 2 A 23 = − 75   ~A_{21}-A_{22}+2A_{23}=-75~  A21A22+2A23=75 

6、设   R 2 [ x ]   ~\mathbb{R}_2[x]~  R2[x] 为全体次数不超过2的实系数及零多项式生成的线性空间,考虑线性变换   A = x d d x : R 2 [ x ] →   R 2 [ x ] ~\mathscr{A}=x\frac{d}{dx}:\mathbb{R}_2[x]\rightarrow~\mathbb{R}_2[x]  A=xdxd:R2[x] R2[x],则   A   ~\mathscr{A}~  A 的最小多项式为

注:本人才疏学浅,读不懂要表达的意思

二、解答题

1、给定思维向量值
α 1 = ( 1 , 2 , − 1 , 1 ) ,    α 2 = ( 1 , 3 , − 1 , 2 ) ,    α 3 = ( 2 , 5 , 0 , 5 ) , \alpha_1=(1,2,-1,1),~~\alpha_2=(1,3,-1,2),~~\alpha_3=(2,5,0,5), α1=(1,2,1,1),  α2=(1,3,1,2),  α3=(2,5,0,5),
α 4 = ( 1 , 2 , 1 , 3 ) ,     α 5 = ( 5 , 12 , 1 , 13 ) \alpha_4=(1,2,1,3),~~~\alpha_5=(5,12,1,13) α4=(1,2,1,3),   α5=(5,12,1,13)
求其所有的极大线性无关组

注:这种题目随便拉个非数学系但凡想要考研的,应该就没有问题。
其中的一组极大线性无关组是   α 1 , α 2 , α 3   ~\alpha_1,\alpha_2,\alpha_3~  α1,α2,α3 ,具体过程参考课本。

2、给定二次曲面在空间直角坐标系下的方程为   y 2 + 2 x y + y z − 2 y + 5 = 0   ~y^2+\sqrt{2}xy+yz-2y+5=0~  y2+2 xy+yz2y+5=0 试用正交变换及平移变换将其化为标准方程,并判断这是什么类型的曲面。

注:这应该是解析几何,本人不清楚,所以就没有写了。等我看一下,再来补全吧

3、设   R 3 [ x ]   ~\mathbb{R}_3[x]~  R3[x] 为由全体不超过   3   ~3~  3 的实系数多项式及零多项式生成的线性空间,对任意的   f ( x ) , g ( x ) ∈ R 3 [ x ]   ~f(x),g(x)\in\mathbb{R}_3[x]~  f(x),g(x)R3[x] ,我们定义   ( f ( x ) , g ( x ) ) = ∫ − 1 1 f ( x ) g ( x ) d x   ~(f(x),g(x))=\int_{-1}^{1}f(x)g(x)dx~  (f(x),g(x))=11f(x)g(x)dx .

(1)、证明:   ( f ( x ) , g ( x ) )   ~(f(x),g(x))~  (f(x),g(x)) 定义了   R 3 [ x ]   ~\mathbb{R}_3[x]~  R3[x] 上的内积结构
(2)、在上述内积下,对基   { 1 , x , x 2 , x 3 }   ~\left\{1,x,x^2,x^3\right\}~  {1,x,x2,x3} 按顺序进行   G r a m − s c h m i d t   ~Gram-schmidt~  Gramschmidt 正交化,将其化为标准正交基.

(1)、证明:这是显然的,把内积的四条性质证明一下,很容易。
(2)、先正交化,   G r a m − s c h m i d t   ~Gram-schmidt~  Gramschmidt 正交化的本质是投影,然后再单位化,或许是我眼高手低吧,我感觉这题意义不大,就是考察一下内积的定义,了解   G r a m − s c h m i d t   ~Gram-schmidt~  Gramschmidt 正交化(当然不了解,记住公式也行),最后就是内积模的定义。

4、设   A , B   ~A,B~  A,B    n   ~n~  n 阶实对称矩阵,其中   A   ~A~  A 为正定矩阵,证明:当实数   α   ~\alpha~  α 充分大时,矩阵   α A + B   ~\alpha A+B~  αA+B 是正定矩阵

证明:首先表明   α A + B   ~\alpha A+B~  αA+B 是对称矩阵
因为   A   ~A~  A 是正定矩阵,故存在可逆矩阵   P   ~P~  P ,使得   P T A P = E   ~P^TAP=E~  PTAP=E ,即是矩阵   A   ~A~  A 合同于单位矩阵,那么   α A + B   ~\alpha A+B~  αA+B 就会合同于   α E + P T B P   ~\alpha E+P^TBP~  αE+PTBP ,对于这个问题   α E + P T B P   ~\alpha E+P^TBP~  αE+PTBP ,一定会存在   α   ~\alpha~  α ,使其为正定矩阵(   ~  这个我就不证明了,可以用特征值证明   ~  ),最后根据合同矩阵有相同的正负惯性指数,所以当实数   α   ~\alpha~  α 充分大时,矩阵   α A + B   ~\alpha A+B~  αA+B 是正定矩阵

注:其实这题是显然的,如果对《高等代数》课本熟悉的话,我已经好久没有看课本了。没有记错的话,这是第三章补充题习题的第十题吧,也是矩阵对角占优的性质,挺巧的有两点,课本的这道题是我当时考研试题,而且这也是我选择数学系中计算数学方向,再学习《数值分析》中,如果雅克比迭代算法是收敛,一个充分条件就是矩阵为对角占优矩阵。

5、设   A   ~A~  A    n   ~n~  n 阶复方阵,证明:对任意的正整数   M , N ≥ n   ~M,N\ge n~  M,Nn 
总有   r a n k ( A N ) = r a n k ( A M )   ~rank(A^N)=rank(A^M)~  rank(AN)=rank(AM) 

证明:这题也很显然,我想方法有两种
(1)、用若尔当标准型,若尔当矩阵的每一个若尔当小块都是幂零矩阵,再写一下,结论就不言自明。
(2)、就是用矩阵的秩来证明,可以分   A   ~A~  A 为可逆矩阵,结论显然成立;如果   A   ~A~  A 不可逆,则一定存在   k ≤ n   ~k\le n~  kn ,使得   r a n k ( A k ) = r a n k ( A k + 1 )   ~rank(A^k)=rank(A^{k+1})~  rank(Ak)=rank(Ak+1) ,题目也证明完毕了,为什么这个秩的等式会成立,我就不说了,都是想尝试中科大的,应该很简单。

注:如果有兴趣,可以证明这个问题,若   r a n k ( A k ) = r a n k ( A k + 1 )   ~rank(A^k)=rank(A^{k+1})~  rank(Ak)=rank(Ak+1) ,
  r a n k ( A k + 1 ) = r a n k ( A k + 2 )   ~rank(A^{k+1})=rank(A^{k+2})~  rank(Ak+1)=rank(Ak+2) 
提示:用等价方程组,如果知道这个结论,所以题目结论可以改写.

6、设   A , B , C , D   ~A,B,C,D~  A,B,C,D 均为   n   ~n~  n 阶方阵,且   B D = D B   ~BD=DB~  BD=DB ,证明:
d e t ( A B C D ) = d e t ( D A − B C ) det\begin{pmatrix} A&B\\ C&D \end{pmatrix}=det(DA-BC) det(ACBD)=det(DABC)

证明:感觉这题也很显然,我们可以首先假设   D   ~D~  D 为可逆矩阵,那么结论就是显然成立。
然后假设   D   ~D~  D 不可逆,令   f ( t ) = ∣ t E n + D ∣   ~f(t)=\vert tE_n+D\vert~  f(t)=tEn+D ,则   f ( t )   ~f(t)~  f(t) 至多有   n   ~n~  n 个根,那么存在无穷个   t   ~t~  t 使得   f ( t ) ≠ 0   ~f(t)\neq 0~  f(t)=0 ,即是
d e t ( A B C D + t E n ) = d e t ( ( D + t E n ) A − B C ) det\begin{pmatrix} A&B\\ C&D+tE_n \end{pmatrix}=det((D+tE_n)A-BC) det(ACBD+tEn)=det((D+tEn)ABC)
由多项式的性质   t = 0   ~t=0~  t=0 时仍然也成立

注:上述过程可能写的不清楚,但是这题确实是一个简单图。利用的矩阵的摄动理论,很常见的一道题。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多情剑客无情剑yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值