1、填空题(每空5分,共40分,需化简答案)
(1)、已知空间中三个定点
A(1,1,1),
~~
B(2,1,2),
~~
C(1,-1,0)
则三角形
△
A
B
C
~\vartriangle ABC~
△ABC 的面积为
‾
~\underline~
已知
(
0
,
α
,
1
)
~(0,\alpha,1)~
(0,α,1) 与
A
,
B
,
C
~A,B,C~
A,B,C 共面,则
a
=
~a=_~
a=
解;主要考察向量的知识(向量的外积与向量的线性相关性)
S
△
A
B
C
=
1
2
∣
A
B
⃗
×
A
C
⃗
∣
=
1
2
∣
(
1
,
0
,
1
)
×
(
0
,
−
2
,
−
1
)
∣
=
1
2
∣
(
2
,
1
,
−
2
)
∣
=
3
2
\begin{aligned} S_{\vartriangle ABC}&=\frac{1}{2}\vert \vec{AB}\times\vec{AC}\vert\\ &=\frac{1}{2}\vert\ (1,0,1)\times (0,-2,-1)\vert\\ &=\frac{1}{2}\vert (2,1,-2)\vert\\ &=\frac{3}{2} \end{aligned}
S△ABC=21∣AB×AC∣=21∣ (1,0,1)×(0,−2,−1)∣=21∣(2,1,−2)∣=23
记
(
0
,
α
,
1
)
~(0,\alpha,1)~
(0,α,1) 为
D
~D~
D 点,即是
D
~D~
D 点与
A
,
B
,
C
~A,B,C~
A,B,C 共面
则
A
D
⃗
~\vec{AD}~
AD 与向量
A
B
⃗
~\vec{AB}~
AB ,
A
C
⃗
~\vec{AC}~
AC 线性相关
那么
A
D
⃗
~\vec{AD}~
AD 可由向量
A
B
⃗
~\vec{AB}~
AB ,
A
C
⃗
~\vec{AC}~
AC 线性表出
很容易解的
α
=
3
~\alpha=3~
α=3
2、空间中直线
l
1
:
x
−
1
=
2
−
y
=
z
~l_1:x-1=2-y=z~
l1:x−1=2−y=z 绕
l
2
:
y
=
z
=
0
~l_2:y=z=0~
l2:y=z=0 旋转所得的选择面的一般方程为
注:这应该是解析几何的内容吧,不过本人大学是金融专业的,没有学过解析几何,等我看一下解析几何,以后再做吧。
3、方阵
A
=
(
1
0
1
1
3
1
1
1
0
0
1
0
0
0
2
1
)
A=\begin{pmatrix}1&0&1&1\\3&1&1&1\\0&0&1&0\\0&0&2&1\end{pmatrix}
A=
1300010011121101
的逆为
(
1
0
1
−
1
−
3
1
−
2
2
0
0
1
0
0
0
−
2
1
)
\begin{pmatrix}1&0&1&-1\\-3&1&-2&2\\0&0&1&0\\0&0&-2&1\end{pmatrix}
1−30001001−21−2−1201
,
行列式
d
e
t
(
I
n
2
I
n
2
I
n
2
I
n
)
=
(
−
2
)
n
~det\begin{pmatrix}I_n&2I_n\\2I_n&2I_n\end{pmatrix}=(-2)^n~
det(In2In2In2In)=(−2)n ,其中
I
n
~I_n~
In 为
n
~n~
n 阶单位矩阵
4、已知实系数二次型
2
x
2
+
2
y
2
+
2
z
2
−
x
y
−
b
y
z
~2x^2+2y^2+2z^2-xy-byz~
2x2+2y2+2z2−xy−byz 是正定的,则系数
b
~b~
b 的取值范围是(-2
3
\sqrt{3}
3,2
3
\sqrt{3}
3)
5、设
A
=
(
5
1
1
9
8
3
2
7
3
)
A=\begin{pmatrix}5&1&1\\9&8&3\\2&7&3\end{pmatrix}
A=
592187133
,
∣
A
∣
~\vert A \vert~
∣A∣ 第二行元素的代数余子式为
A
21
,
A
22
,
A
23
~A_{21},A_{22},A_{23}~
A21,A22,A23 ,
则
A
21
−
A
22
+
2
A
23
=
−
75
~A_{21}-A_{22}+2A_{23}=-75~
A21−A22+2A23=−75
6、设
R
2
[
x
]
~\mathbb{R}_2[x]~
R2[x] 为全体次数不超过2的实系数及零多项式生成的线性空间,考虑线性变换
A
=
x
d
d
x
:
R
2
[
x
]
→
R
2
[
x
]
~\mathscr{A}=x\frac{d}{dx}:\mathbb{R}_2[x]\rightarrow~\mathbb{R}_2[x]
A=xdxd:R2[x]→ R2[x],则
A
~\mathscr{A}~
A 的最小多项式为
注:本人才疏学浅,读不懂要表达的意思
二、解答题
1、给定思维向量值
α
1
=
(
1
,
2
,
−
1
,
1
)
,
α
2
=
(
1
,
3
,
−
1
,
2
)
,
α
3
=
(
2
,
5
,
0
,
5
)
,
\alpha_1=(1,2,-1,1),~~\alpha_2=(1,3,-1,2),~~\alpha_3=(2,5,0,5),
α1=(1,2,−1,1), α2=(1,3,−1,2), α3=(2,5,0,5),
α
4
=
(
1
,
2
,
1
,
3
)
,
α
5
=
(
5
,
12
,
1
,
13
)
\alpha_4=(1,2,1,3),~~~\alpha_5=(5,12,1,13)
α4=(1,2,1,3), α5=(5,12,1,13)
求其所有的极大线性无关组
注:这种题目随便拉个非数学系但凡想要考研的,应该就没有问题。
其中的一组极大线性无关组是
α
1
,
α
2
,
α
3
~\alpha_1,\alpha_2,\alpha_3~
α1,α2,α3 ,具体过程参考课本。
2、给定二次曲面在空间直角坐标系下的方程为
y
2
+
2
x
y
+
y
z
−
2
y
+
5
=
0
~y^2+\sqrt{2}xy+yz-2y+5=0~
y2+2xy+yz−2y+5=0 试用正交变换及平移变换将其化为标准方程,并判断这是什么类型的曲面。
注:这应该是解析几何,本人不清楚,所以就没有写了。等我看一下,再来补全吧
3、设
R
3
[
x
]
~\mathbb{R}_3[x]~
R3[x] 为由全体不超过
3
~3~
3 的实系数多项式及零多项式生成的线性空间,对任意的
f
(
x
)
,
g
(
x
)
∈
R
3
[
x
]
~f(x),g(x)\in\mathbb{R}_3[x]~
f(x),g(x)∈R3[x] ,我们定义
(
f
(
x
)
,
g
(
x
)
)
=
∫
−
1
1
f
(
x
)
g
(
x
)
d
x
~(f(x),g(x))=\int_{-1}^{1}f(x)g(x)dx~
(f(x),g(x))=∫−11f(x)g(x)dx .
(1)、证明:
(
f
(
x
)
,
g
(
x
)
)
~(f(x),g(x))~
(f(x),g(x)) 定义了
R
3
[
x
]
~\mathbb{R}_3[x]~
R3[x] 上的内积结构
(2)、在上述内积下,对基
{
1
,
x
,
x
2
,
x
3
}
~\left\{1,x,x^2,x^3\right\}~
{1,x,x2,x3} 按顺序进行
G
r
a
m
−
s
c
h
m
i
d
t
~Gram-schmidt~
Gram−schmidt 正交化,将其化为标准正交基.
(1)、证明:这是显然的,把内积的四条性质证明一下,很容易。
(2)、先正交化,
G
r
a
m
−
s
c
h
m
i
d
t
~Gram-schmidt~
Gram−schmidt 正交化的本质是投影,然后再单位化,或许是我眼高手低吧,我感觉这题意义不大,就是考察一下内积的定义,了解
G
r
a
m
−
s
c
h
m
i
d
t
~Gram-schmidt~
Gram−schmidt 正交化(当然不了解,记住公式也行),最后就是内积模的定义。
4、设
A
,
B
~A,B~
A,B 为
n
~n~
n 阶实对称矩阵,其中
A
~A~
A 为正定矩阵,证明:当实数
α
~\alpha~
α 充分大时,矩阵
α
A
+
B
~\alpha A+B~
αA+B 是正定矩阵
证明:首先表明
α
A
+
B
~\alpha A+B~
αA+B 是对称矩阵
因为
A
~A~
A 是正定矩阵,故存在可逆矩阵
P
~P~
P ,使得
P
T
A
P
=
E
~P^TAP=E~
PTAP=E ,即是矩阵
A
~A~
A 合同于单位矩阵,那么
α
A
+
B
~\alpha A+B~
αA+B 就会合同于
α
E
+
P
T
B
P
~\alpha E+P^TBP~
αE+PTBP ,对于这个问题
α
E
+
P
T
B
P
~\alpha E+P^TBP~
αE+PTBP ,一定会存在
α
~\alpha~
α ,使其为正定矩阵(
~
这个我就不证明了,可以用特征值证明
~
),最后根据合同矩阵有相同的正负惯性指数,所以当实数
α
~\alpha~
α 充分大时,矩阵
α
A
+
B
~\alpha A+B~
αA+B 是正定矩阵
注:其实这题是显然的,如果对《高等代数》课本熟悉的话,我已经好久没有看课本了。没有记错的话,这是第三章补充题习题的第十题吧,也是矩阵对角占优的性质,挺巧的有两点,课本的这道题是我当时考研试题,而且这也是我选择数学系中计算数学方向,再学习《数值分析》中,如果雅克比迭代算法是收敛,一个充分条件就是矩阵为对角占优矩阵。
5、设
A
~A~
A 为
n
~n~
n 阶复方阵,证明:对任意的正整数
M
,
N
≥
n
~M,N\ge n~
M,N≥n ,
总有
r
a
n
k
(
A
N
)
=
r
a
n
k
(
A
M
)
~rank(A^N)=rank(A^M)~
rank(AN)=rank(AM)
证明:这题也很显然,我想方法有两种
(1)、用若尔当标准型,若尔当矩阵的每一个若尔当小块都是幂零矩阵,再写一下,结论就不言自明。
(2)、就是用矩阵的秩来证明,可以分
A
~A~
A 为可逆矩阵,结论显然成立;如果
A
~A~
A 不可逆,则一定存在
k
≤
n
~k\le n~
k≤n ,使得
r
a
n
k
(
A
k
)
=
r
a
n
k
(
A
k
+
1
)
~rank(A^k)=rank(A^{k+1})~
rank(Ak)=rank(Ak+1) ,题目也证明完毕了,为什么这个秩的等式会成立,我就不说了,都是想尝试中科大的,应该很简单。
注:如果有兴趣,可以证明这个问题,若
r
a
n
k
(
A
k
)
=
r
a
n
k
(
A
k
+
1
)
~rank(A^k)=rank(A^{k+1})~
rank(Ak)=rank(Ak+1) ,
则
r
a
n
k
(
A
k
+
1
)
=
r
a
n
k
(
A
k
+
2
)
~rank(A^{k+1})=rank(A^{k+2})~
rank(Ak+1)=rank(Ak+2)
提示:用等价方程组,如果知道这个结论,所以题目结论可以改写.
6、设
A
,
B
,
C
,
D
~A,B,C,D~
A,B,C,D 均为
n
~n~
n 阶方阵,且
B
D
=
D
B
~BD=DB~
BD=DB ,证明:
d
e
t
(
A
B
C
D
)
=
d
e
t
(
D
A
−
B
C
)
det\begin{pmatrix} A&B\\ C&D \end{pmatrix}=det(DA-BC)
det(ACBD)=det(DA−BC)
证明:感觉这题也很显然,我们可以首先假设
D
~D~
D 为可逆矩阵,那么结论就是显然成立。
然后假设
D
~D~
D 不可逆,令
f
(
t
)
=
∣
t
E
n
+
D
∣
~f(t)=\vert tE_n+D\vert~
f(t)=∣tEn+D∣ ,则
f
(
t
)
~f(t)~
f(t) 至多有
n
~n~
n 个根,那么存在无穷个
t
~t~
t 使得
f
(
t
)
≠
0
~f(t)\neq 0~
f(t)=0 ,即是
d
e
t
(
A
B
C
D
+
t
E
n
)
=
d
e
t
(
(
D
+
t
E
n
)
A
−
B
C
)
det\begin{pmatrix} A&B\\ C&D+tE_n \end{pmatrix}=det((D+tE_n)A-BC)
det(ACBD+tEn)=det((D+tEn)A−BC)
由多项式的性质
t
=
0
~t=0~
t=0 时仍然也成立
注:上述过程可能写的不清楚,但是这题确实是一个简单图。利用的矩阵的摄动理论,很常见的一道题。