2021年上海理工大学《高等代数》试卷和答案(蔡宇编辑)

2021年上海理工大学《高等代数》试卷
解题人:蔡宇

1、(10分)设
∣ α 11 α 12 … α 1 n α 21 α 22 … α 2 n … … … … α n 1 α n 2 … α n n ∣ = 1 \begin{vmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots &\dots&\dots\\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{vmatrix}=1 α11α21αn1α12α22αn2α1nα2nαnn=1
且满足 α i j = − α j i    ( i , j = 1 , 2 , … n ) \alpha_{ij}=-\alpha_{ji}~~(i,j=1,2,\dots n) αij=αji  (i,j=1,2,n)
对任意的数   b   ~b~  b ,求
∣ α 11 + b α 12 + b … α 1 n + b α 21 + b α 22 + b … α 2 n + b … … … … α n 1 + b α n 2 + b … α n n + b ∣ \begin{vmatrix} \alpha_{11}+b & \alpha_{12}+b & \dots & \alpha_{1n}+b \\ \alpha_{21}+b & \alpha_{22}+b & \dots & \alpha_{2n}+b \\ \dots & \dots &\dots&\dots\\ \alpha_{n1}+b & \alpha_{n2}+b & \dots & \alpha_{nn}+b \end{vmatrix} α11+bα21+bαn1+bα12+bα22+bαn2+bα1n+bα2n+bαnn+b
解法一:由于已知矩阵的行列式非零,且该行列式对应的矩阵为反对称矩阵,故可知该已知行列式中的   n   ~n~  n 一定为偶数。
  b = 0   ~b=0~  b=0 时,要求的行列式显然为1
  b ≠ 0   ~b\neq0~  b=0 时,现考虑通过加边法
∣ α 11 + b α 12 + b … α 1 n + b α 21 + b α 22 + b … α 2 n + b … … … … α n 1 + b α n 2 + b … α n n + b ∣ = ∣ 1 0 0 … 0 1 α 11 + b α 12 + b … α 1 n + b 1 α 21 + b α 22 + b … α 2 n + b … … … … 1 α n 1 + b α n 2 + b … α n n + b ∣ = ∣ 1 − b − b … − b 1 α 11 α 12 … α 1 n 1 α 21 α 22 … α 2 n … … … … 1 α n 1 α n 2 … α n n ∣ \begin{vmatrix} \alpha_{11}+b & \alpha_{12}+b & \dots & \alpha_{1n}+b \\ \alpha_{21}+b & \alpha_{22}+b & \dots & \alpha_{2n}+b \\ \dots & \dots &\dots&\dots\\ \alpha_{n1}+b & \alpha_{n2}+b & \dots & \alpha_{nn}+b \end{vmatrix}=\begin{vmatrix} 1 & 0 & 0 & \dots&0 \\ 1&\alpha_{11}+b & \alpha_{12}+b & \dots & \alpha_{1n}+b \\ 1&\alpha_{21}+b & \alpha_{22}+b & \dots & \alpha_{2n}+b \\ \dots & \dots &\dots&\dots\\ 1&\alpha_{n1}+b & \alpha_{n2}+b & \dots & \alpha_{nn}+b \end{vmatrix}=\begin{vmatrix} 1 & -b & -b & \dots&-b \\ 1&\alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ 1&\alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots &\dots&\dots\\ 1&\alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{vmatrix} α11+bα21+bαn1+bα12+bα22+bαn2+bα1n+bα2n+bαnn+b=11110α11+bα21+bαn1+b0α12+bα22+bαn2+b0α1n+bα2n+bαnn+b=1111bα11α21αn1bα12α22αn2bα1nα2nαnn
= ∣ 1 − b − b … − b 0 α 11 α 12 … α 1 n 0 α 21 α 22 … α 2 n … … … … 0 α n 1 α n 2 … α n n ∣ + ∣ 0 − b − b … − b 1 α 11 α 12 … α 1 n 1 α 21 α 22 … α 2 n … … … … 1 α n 1 α n 2 … α n n ∣ = 1 + 0 = 1 =\begin{vmatrix} 1 & -b & -b & \dots&-b \\ 0&\alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ 0&\alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots &\dots&\dots\\ 0&\alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{vmatrix}+\begin{vmatrix} 0 & -b & -b & \dots&-b \\ 1&\alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ 1&\alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots &\dots&\dots\\ 1&\alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{vmatrix}=1+0=1 =1000bα11α21αn1bα12α22αn2bα1nα2nαnn+0111bα11α21αn1bα12α22αn2bα1nα2nαnn=1+0=1
注:上面第二个行列式是奇数阶的反对称矩阵,故其行列式为0.
故对任意的数   b   ~b~  b 
∣ α 11 + b α 12 + b … α 1 n + b α 21 + b α 22 + b … α 2 n + b … … … … α n 1 + b α n 2 + b … α n n + b ∣ = 1 \begin{vmatrix} \alpha_{11}+b & \alpha_{12}+b & \dots & \alpha_{1n}+b \\ \alpha_{21}+b & \alpha_{22}+b & \dots & \alpha_{2n}+b \\ \dots & \dots &\dots&\dots\\ \alpha_{n1}+b & \alpha_{n2}+b & \dots & \alpha_{nn}+b \end{vmatrix}=1 α11+bα21+bαn1+bα12+bα22+bαn2+bα1n+bα2n+bαnn+b=1
解法二:还是先要指出这是一个偶数阶的反对称矩阵
∣ α 11 + b α 12 + b … α 1 n + b α 21 + b α 22 + b … α 2 n + b … … … … α n 1 + b α n 2 + b … α n n + b ∣ = ∣ α 11 α 12 … α 1 n α 21 α 22 … α 2 n … … … … α n 1 α n 2 … α n n ∣ + b ∑ i = 1 n ∑ j = 1 n A i j \begin{vmatrix} \alpha_{11}+b & \alpha_{12}+b & \dots & \alpha_{1n}+b \\ \alpha_{21}+b & \alpha_{22}+b & \dots & \alpha_{2n}+b \\ \dots & \dots &\dots&\dots\\ \alpha_{n1}+b & \alpha_{n2}+b & \dots & \alpha_{nn}+b \end{vmatrix}=\begin{vmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots &\dots&\dots\\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{vmatrix}+b\sum_{i=1}^n\sum_{j=1}^n A_{ij} α11+bα21+bαn1+bα12+bα22+bαn2+bα1n+bα2n+bαnn+b=α11α21αn1α12α22αn2α1nα2nαnn+bi=1nj=1nAij
其 中 A i j 为 矩 阵 ( a i j ) 对 应 元 素 a i j 的 代 数 余 子 式 其中 A_{ij}为矩阵(a_{ij})对应元素a_{ij}的代数余子式 Aij(aij)aij
我们将其代数余子式可以分为两类,
对角线元素的代数余子式,这是一个奇数阶的反对称矩阵的行列式,故其值为0.
非对角线元素的代数余子式,但是他们会成对出现,行列式异号,我们一定有
A i j + A j i = 0 , 当 i ≠ j 时 A_{ij}+A_{ji}=0,当i\neq j时 Aij+Aji=0,i=j
故所求行列式的值为1


2、(10分)若整系数线性方程组
( α 11 α 12 … α 1 n α 21 α 22 … α 2 n … … … … α n 1 α n 2 … α n n ) ( x 1 x 2 ⋮ x n ) = ( b 1 b 2 ⋮ b n ) \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots &\dots&\dots\\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix}\begin{pmatrix} x_1\\x_2\\ \vdots\\x_n\end{pmatrix}=\begin{pmatrix} b_1\\b_2\\ \vdots\\b_n\end{pmatrix} α11α21αn1α12α22αn2α1nα2nαnnx1x2xn=b1b2bn
对任意的整数 b 1 , b 2 , … , b n b_1,b_2,\dots,b_n b1,b2,,bn都有整数解,求该方程组系数矩阵的行列式

证明:我们分两种情况来讨论
(1)系数矩阵不可逆,即其的行列式等于0。这种情况下有很多反例,随便写出一种即可
(2)系数矩阵可逆,对于方程组的解有
x = A − 1 b = A ∗ b ∣ A ∣ x=A^{-1}b=\frac{A^*b}{\vert A\vert} x=A1b=AAb
由于系数矩阵为整数矩阵,故其伴随矩阵一定也为整数矩阵(伴随矩阵的元素只是对原矩阵进行加、减、乘运算而已),故对任意的整数 b 1 , b 2 , … , b n b_1,b_2,\dots,b_n b1,b2,,bn,有   A ∗ b   ~A^*b~  Ab 一定也为整数向量,从而要想一定要有整数解,那么系数矩阵的行列式只能为1或者-1。
综上所述:该方程组的系数矩阵的行列式只能为1或者-1才能满足要求


3、(20分)设   A   ~A~  A    n   ~n~  n 阶方阵,证明:存在一个可逆矩阵   B   ~B~  B 及一个幂等矩阵   C   ~C~  C ,使得 A = B C A=BC A=BC.
证明:我们可以把任意一个矩阵进行如下分解
A = P ( E r 0 0 0 ) Q = P Q − 1 Q ( E r 0 0 0 ) Q A=P\begin{pmatrix}E_r&0\\0&0 \end{pmatrix}Q=PQ^{-1}Q\begin{pmatrix}E_r&0\\0&0 \end{pmatrix}Q A=P(Er000)Q=PQ1Q(Er000)Q
其中 P , Q 为 可 逆 矩 阵 , r 等 于 矩 阵 A 的 秩 P,Q为可逆矩阵,r等于矩阵A的秩 P,QrA,这也是矩阵关于秩的分解。
我们令   B = P Q − 1   ~B=PQ^{-1}~  B=PQ1 , C = Q − 1 ( E r 0 0 0 ) Q C=Q^{-1}\begin{pmatrix}E_r&0\\0&0 \end{pmatrix}Q C=Q1(Er000)Q
显然我们有   B   ~B~  B 为可逆矩阵,   C   ~C~  C 为幂等矩阵。


4、(15分)设   f ( x )   ~f(x)~  f(x) 为实数域上 R \mathbb{R} R上的多项式,若 f ( x + y ) = f ( x ) f ( y ) , ∀ x , y ∈ R f(x+y)=f(x)f(y),\forall x,y\in\mathbb{R} f(x+y)=f(x)f(y),x,yR,求   f ( x )   ~f(x)~  f(x) .
:不妨令   y = 0   ~y=0~  y=0 ,有   f ( x ) = f ( x ) f ( 0 )   ~f(x)=f(x)f(0)~  f(x)=f(x)f(0) ,则有   f ( 0 ) = 0 或 者 f ( 0 ) = 1   ~f(0)=0或者f(0)=1~  f(0)=0f(0)=1 
  y = − x   ~y=-x~  y=x ,有 f ( 0 ) = f ( x ) f ( − x )   f(0)=f(x)f(-x)~ f(0)=f(x)f(x) ,由于   f ( x )   ~f(x)~  f(x) 为多项式,故有   d e g f ( 0 ) = 2 d e g f ( x )   ~degf(0)=2degf(x)~  degf(0)=2degf(x) ,那么有   f ( x ) = 0 , 或 者   d e g f ( x ) = 0   ~f(x)=0,或者~degf(x)=0~  f(x)=0 degf(x)=0 ,故   f ( x ) = 0 , 或 者 f ( x ) = 1   ~f(x)=0,或者f(x)=1~  f(x)=0,f(x)=1 .


5、(20分)已知实二次型
  f ( x 1 , x 2 , x 3 ) = x 1 2 + α x 2 2 + x 3 2 + 2 b x 1 x 2 + 2 x 1 x 3 + 2 x 2 x 3   ~f(x_1,x_2,x_3)=x_1^2+\alpha x_2^2 +x_3^2+2bx_1x_2+2x_1x_3+2x_2x_3~  f(x1,x2,x3)=x12+αx22+x32+2bx1x2+2x1x3+2x2x3 经过正交线性替换
( x 1 x 2 x 3 ) = P ( y 1 y 2 y 3 ) \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}=P\begin{pmatrix} y_1\\y_2\\y_3 \end{pmatrix} x1x2x3=Py1y2y3
化为标准型   y 1 2 + 4 y 2 2   ~y_1^2+4y_2^2~  y12+4y22 ,求 a , b 的 值 及 正 交 矩 阵 P a,b的值及正交矩阵P a,bP
:不妨记二次型   f ( x 1 , x 2 , x 3 )   ~f(x_1,x_2,x_3)~  f(x1,x2,x3) 对应的矩阵为   A   ~A~  A 
A = ( 1 b 1 b α 1 1 1 1 ) A=\begin{pmatrix} 1&b&1\\ b&\alpha&1\\ 1&1&1 \end{pmatrix} A=1b1bα1111
不妨记二次型   y 1 2 + 4 y 2 2   ~y_1^2+4y_2^2~  y12+4y22 对应的矩阵为   B   ~B~  B 
B = ( 1 0 0 0 4 0 0 0 0 ) B=\begin{pmatrix} 1&0&0\\ 0&4&0\\ 0&0&0 \end{pmatrix} B=100040000
由于矩阵   A 和 B 是 正 交 相 似 的   ~A和B是正交相似的~  AB ,根据相似的矩阵有相同的特征值,迹和行列式
根据矩阵迹相同,则   α = 3   ~\alpha=3~  α=3 .
根据行列式相同,则   b = 1   ~b=1~  b=1 .
我们现在求矩阵   A   分 别 对 应 特 征 值 1 , 4 , 0 的 特 征 向 量 ~A~分别对应特征值1,4,0的特征向量  A 1,4,0
  ( A − E ) X = 0   ~(A-E)X=0~  (AE)X=0 ,解得对应的特征向量基础解析 ( − 1 1 − 1 ) \begin{pmatrix} -1\\ 1\\ -1 \end{pmatrix} 111单位化得 ( − 1 3 1 3 − 1 3 ) \begin{pmatrix} \frac{-1}{\sqrt3}\\ \frac{1}{\sqrt3}\\ \frac{-1}{\sqrt3} \end{pmatrix} 3 13 13 1,
  ( A − 4 E ) X = 0   ~(A-4E)X=0~  (A4E)X=0 ,解得对应的特征向量基础解析 ( 1 2 1 ) \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix} 121单位化得 ( 1 6 2 6 1 6 ) \begin{pmatrix} \frac{1}{\sqrt6}\\ \frac{2}{\sqrt6}\\ \frac{1}{\sqrt6} \end{pmatrix} 6 16 26 1,
  A X = 0   ~AX=0~  AX=0 ,解得对应的特征向量基础解析 ( 1 0 − 1 ) \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix} 101单位化得 ( 1 2 0 − 1 2 ) \begin{pmatrix} \frac{1}{\sqrt2}\\ 0\\ \frac{-1}{\sqrt2} \end{pmatrix} 2 102 1,
故正交矩阵 P = ( − 1 3 1 6 1 2 1 3 2 6 0 − 1 3 1 6 − 1 2 ) P=\begin{pmatrix} \frac{-1}{\sqrt3}&\frac{1}{\sqrt6}&\frac{1}{\sqrt2}\\ \frac{1}{\sqrt3}&\frac{2}{\sqrt6}&0\\ \frac{-1}{\sqrt3}&\frac{1}{\sqrt6}&\frac{-1}{\sqrt2} \end{pmatrix} P=3 13 13 16 16 26 12 102 1


6、(15分)若   n   ~n~  n 维线性空间的两个子空间的和的维数减1等于它们交的维数,证明:它们的和与其中的一个子空间相等,它们的交与另一个子空间相等。
证明:不妨设   V 1 和 V 2   ~V_1和V_2~  V1V2    n   ~n~  n 维线性空间的两个子空间
则根据线性空间的维数公式及和空间、交空间的维数关系有
d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) = d i m ( V 1 ) + d i m ( V 2 ) dim(V_1+V_2)+dim(V_1\cap V_2)=dim(V_1)+dim(V_2) dim(V1+V2)+dim(V1V2)=dim(V1)+dim(V2)
根据题目已知   d i m ( V 1 + V 2 ) − 1 = d i m ( V 1 ∩ V 2 )   ~dim(V_1+V_2)-1=dim(V_1\cap V_2)~  dim(V1+V2)1=dim(V1V2) 
则有   2 d i m ( V 1 ∩ V 2 ) + 1 = d i m ( V 1 ) + d i m ( V 2 ) ≥ 2 d i m ( V 1 ∩ V 2 )   ~2dim(V_1\cap V_2)+1=dim(V_1)+dim(V_2)\ge 2 dim(V_1\cap V_2)~  2dim(V1V2)+1=dim(V1)+dim(V2)2dim(V1V2) 
我们可以得出只会出现下面两种情之一:
(1)、 d i m ( V 1 ∩ V 2 ) = d i m ( V 1 ) , d i m ( V 1 ∩ V 2 ) + 1 = d i m ( V 2 ) = d i m ( V 1 + V 2 ) dim(V_1\cap V_2)=dim(V_1),dim(V_1\cap V_2)+1=dim(V_2)=dim(V_1+V_2) dim(V1V2)=dim(V1),dim(V1V2)+1=dim(V2)=dim(V1+V2)
(2)、 d i m ( V 1 ∩ V 2 ) = d i m ( V 2 ) , d i m ( V 1 ∩ V 2 ) + 1 = d i m ( V 1 ) = d i m ( V 1 + V 2 ) dim(V_1\cap V_2)=dim(V_2),dim(V_1\cap V_2)+1=dim(V_1)=dim(V_1+V_2) dim(V1V2)=dim(V2),dim(V1V2)+1=dim(V1)=dim(V1+V2)
无论哪一种情况出现,结论都会得证。


7、(15分)设   A   ~A~  A    3   ~3~  3 阶矩阵,   α   ~\alpha~  α    3   ~3~  3 维列向量,且   α , A α , A 2 α   ~\alpha,A\alpha,A^2\alpha~  α,Aα,A2α 线性无关,
A 3 α = 3 A α − 2 A 2 α A^3\alpha=3A\alpha-2A^2\alpha A3α=3Aα2A2α
证明:矩阵   B = ( α , A α , A 4 α )   ~B=(\alpha,A\alpha,A^4\alpha)~  B=(α,Aα,A4α) 可逆
证明:由于   A 4 α = 3 A 2 α − 2 A 3 α = 3 A 2 α − 2 A 3 α = 7 A 2 α − 6 A α   ~A^4\alpha=3A^2\alpha-2A^3\alpha=3A^2\alpha-2A^3\alpha =7A^2\alpha-6A\alpha~  A4α=3A2α2A3α=3A2α2A3α=7A2α6Aα 
不妨令存在   k 1 , k 2 , k 3   ~k_1,k_2,k_3~  k1,k2,k3 使得   k 1 α + k 2 A α + k 3 A 4 α = 0   ~k_1\alpha+k_2A\alpha+k_3A^4\alpha=0~  k1α+k2Aα+k3A4α=0 ,即
k 1 α + k 2 A α + k 3 ( 7 A 2 α − 6 A α ) = 0 k_1\alpha+k_2A\alpha+k_3(7A^2\alpha-6A\alpha)=0 k1α+k2Aα+k3(7A2α6Aα)=0
k 1 α + ( k 2 − 6 k 3 ) A α + 7 k 3 A 2 α = 0 k_1\alpha+(k_2-6k_3)A\alpha+7k_3A^2\alpha=0 k1α+(k26k3)Aα+7k3A2α=0
由于   α , A α , A 2 α   ~\alpha,A\alpha,A^2\alpha~  α,Aα,A2α 线性无关,故   k 1 = k 3 = 0 , k 2 − 6 k 3 = 0   ~k_1=k_3=0,k_2-6k_3=0~  k1=k3=0,k26k3=0 ,从而   k 1 = k 2 = k 3 = 0   ~k_1=k_2=k_3=0~  k1=k2=k3=0 ,故   α , A α , A 4 α   ~\alpha,A\alpha,A^4\alpha~  α,Aα,A4α 是线性无关,从而矩阵   B = ( α , A α , A 4 α )   ~B=(\alpha,A\alpha,A^4\alpha)~  B=(α,Aα,A4α) 可逆。


8、(15分)求   A   ~A~  A 的若尔当标准型,其中
A = ( 3 0 8 0 3 − 1 6 0 − 2 0 − 5 0 0 0 8 2 ) A=\begin{pmatrix} 3&0&8&0\\ 3&-1&6&0\\ -2&0&-5&0\\ 0&0&8&2 \end{pmatrix} A=3320010086580002

λ E − A = ( λ − 3 0 − 8 0 − 3 λ + 1 − 6 0 2 0 λ + 5 0 0 0 0 λ − 2 ) → ( λ − 3 0 − 8 0 − 1 λ + 1 λ − 1 0 2 0 λ + 5 0 0 0 0 λ − 2 ) \lambda E-A=\begin{pmatrix} \lambda-3&0&-8&0\\ -3&\lambda+1&-6&0\\ 2&0&\lambda+5&0\\ 0&0&0&\lambda-2 \end{pmatrix}\rightarrow\begin{pmatrix} \lambda-3&0&-8&0\\ -1&\lambda+1&\lambda-1&0\\ 2&0&\lambda+5&0\\ 0&0&0&\lambda-2 \end{pmatrix} λEA=λ33200λ+10086λ+50000λ2λ31200λ+1008λ1λ+50000λ2
→ ( 0 λ 2 − 2 λ − 3 λ 2 − 4 λ − 5 0 − 1 λ + 1 λ − 1 0 0 2 λ + 2 3 λ + 3 0 0 0 0 λ − 2 ) → ( 1 0 0 0 0 2 λ + 2 3 λ + 3 0 0 λ 2 − 2 λ − 3 λ 2 − 4 λ − 5 0 0 0 0 λ − 2 ) \rightarrow\begin{pmatrix} 0&\lambda^2-2\lambda-3&\lambda^2-4\lambda-5&0\\ -1&\lambda+1&\lambda-1&0\\ 0&2\lambda+2&3\lambda+3&0\\ 0&0&0&\lambda-2 \end{pmatrix}\rightarrow\begin{pmatrix} 1&0&0&0\\ 0&2\lambda+2&3\lambda+3&0\\ 0&\lambda^2-2\lambda-3&\lambda^2-4\lambda-5&0\\ 0&0&0&\lambda-2 \end{pmatrix} 0100λ22λ3λ+12λ+20λ24λ5λ13λ+30000λ2100002λ+2λ22λ3003λ+3λ24λ50000λ2
→ ( 1 0 0 0 0 2 λ + 2 λ + 1 0 0 λ 2 − 2 λ − 3 ( λ + 1 ) 2 0 0 0 0 λ − 2 ) → ( 1 0 0 0 0 λ + 1 0 0 0 0 ( λ + 1 ) 2 0 0 0 0 λ − 2 ) \rightarrow\begin{pmatrix} 1&0&0&0\\ 0&2\lambda+2&\lambda+1&0\\ 0&\lambda^2-2\lambda-3&(\lambda+1)^2&0\\ 0&0&0&\lambda-2 \end{pmatrix}\rightarrow\begin{pmatrix} 1&0&0&0\\ 0&\lambda+1&0&0\\ 0&0&(\lambda+1)^2&0\\ 0&0&0&\lambda-2 \end{pmatrix} 100002λ+2λ22λ300λ+1(λ+1)20000λ210000λ+10000(λ+1)20000λ2
→ ( 1 0 0 0 0 λ + 1 0 0 0 0 ( λ + 1 ) 2 0 0 0 0 λ − 2 ) → ( 1 0 0 0 0 1 0 0 0 0 λ + 1 0 0 0 0 ( λ + 1 ) 2 ( λ − 2 ) ) \rightarrow\begin{pmatrix} 1&0&0&0\\ 0&\lambda+1&0&0\\ 0&0&(\lambda+1)^2&0\\ 0&0&0&\lambda-2 \end{pmatrix}\rightarrow\begin{pmatrix} 1&0&0&0\\ 0&1&0&0\\ 0&0&\lambda+1&0\\ 0&0&0&(\lambda+1)^2(\lambda-2) \end{pmatrix} 10000λ+10000(λ+1)20000λ21000010000λ+10000(λ+1)2(λ2)
即我们可以得到该特征矩阵的初等因子组是   λ + 1   ~\lambda+1~  λ+1 ,   ( λ + 1 ) 2   ~(\lambda+1)^2~  (λ+1)2 ,   λ − 2   ~\lambda-2~  λ2 ,
故矩阵   A   ~A~  A 的若尔当标准型
( − 1 0 0 0 0 − 1 0 0 0 1 − 1 0 0 0 0 2 ) \begin{pmatrix} -1&0&0&0\\ 0&-1&0&0\\ 0&1&-1&0\\ 0&0&0&2 \end{pmatrix} 1000011000100002


9、(15分)设   A   ~A~  A    n   ~n~  n 阶正定矩阵,判断   A + A − 1 − E   ~A+A^{-1}-E~  A+A1E 是否为正定矩阵,并说明理由。
证明:因为   A + A − 1 − E = (   A + A − 1 − E ) T   ~A+A^{-1}-E=(~A+A^{-1}-E)^T~  A+A1E=( A+A1E)T ,故   A + A − 1 − E   ~A+A^{-1}-E~  A+A1E 为对称矩阵
不妨设   A   ~A~  A 的特征值为   λ 1 , λ 2 , ⋯   , λ n   ~\lambda_1,\lambda_2,\cdots,\lambda_n~  λ1,λ2,,λn ,由   A   ~A~  A    n   ~n~  n 阶正定矩阵,知 λ i > 0 , i = 1 , 2 , ⋯   , n \lambda_i>0,i=1,2,\cdots,n λi>0,i=1,2,,n,故   A + A − 1 − E   ~A+A^{-1}-E~  A+A1E 的特征值为
  λ 1 + 1 λ 1 − 1 , λ 2 + 1 λ 2 − 1 ⋯   , λ n + 1 λ n − 1   ~\lambda_1+\frac{1}{\lambda_1}-1,\lambda_2+\frac{1}{\lambda_2}-1\cdots,\lambda_n+\frac{1}{\lambda_n}-1~  λ1+λ111,λ2+λ211,λn+λn11 ,由于   λ i + 1 λ i ≥ 2   ~\lambda_i+\frac{1}{\lambda_i}\ge2~  λi+λi12 ,故   A + A − 1 − E   ~A+A^{-1}-E~  A+A1E 的特征值都大于0,那么   A + A − 1 − E   ~A+A^{-1}-E~  A+A1E 为正定矩阵。


10、(15分)设   A , B   ~A,B~  A,B    2   ~2~  2 阶矩阵,且   A = A B − B A   ~A=AB-BA~  A=ABBA ,求   A 2   ~A^2~  A2 .
:首先我们应该知道矩阵   A B   ~AB~  AB 和矩阵   B A   ~BA~  BA 有相同的特征值(证明很常见,此处不证明),故他们有相同的迹。
那我们现在证明这样矩阵   A   ~A~  A 不可逆,用反证法,假设矩阵   A   ~A~  A 可逆
则把   A = A B − B A   ~A=AB-BA~  A=ABBA 左乘   A − 1   ~A^{-1}~  A1 ,我们有
n =   t r ( E ) = t r ( B − A − 1 B A ) = t r ( B ) − t r ( A − 1 B A ) = 0   n=~tr(E)=tr(B-A^{-1}BA)=tr(B)-tr(A^{-1}BA)=0~ n= tr(E)=tr(BA1BA)=tr(B)tr(A1BA)=0 ,显然矛盾,故假设不成立
由于   A   ~A~  A    2   ~2~  2 阶矩阵,根据相似的矩阵有相同的迹和秩,那么矩阵矩阵   A   ~A~  A 的若尔当标准型一定为
B = ( 0 0 ∗ 0 ) , 其 中 ∗ 为 0 或 者 1 B=\begin{pmatrix} 0&0\\ *&0\\ \end{pmatrix},其中*为0或者1 B=(000)01
显然   B   ~B~  B 为幂零矩阵,即   B 2 = 0   ~B^2=0~  B2=0 ,那么   A 2   ~A^2~  A2    0   ~0~  0 矩阵相似,故   A 2 = 0   ~A^2=0~  A2=0 .

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多情剑客无情剑yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值