随着人工智能技术的迅猛发展,机器视觉在各行各业中得到了广泛的应用,尤其是在安防、农业、环境监测等领域。今天,我们将探索一个结合了YOLOv5目标检测模型和PyQt5界面的智能水域监测系统,它不仅能精准地识别水域中的异常情况,还能自动生成报告,助力决策和应急响应。
系统简介
本系统主要针对水域监测场景,利用YOLOv5目标检测模型,对输入的图像或视频进行目标检测,识别出水域中的积水、障碍物等对象,并计算积水面积。若检测到重度积水,系统会发出警告信号,并将结果实时保存至数据库中,最终自动生成检测报告。
完整项目地址:PyQt5+YoloV5 实现积水检测系统
技术架构
系统采用了PyQt5作为界面框架,结合YOLOv5目标检测模型、MySQL数据库以及Matplotlib数据可视化,形成了一个完整的端到端解决方案。其主要模块包括:
- 目标检测模块:使用YOLOv5模型对图像或视频中的目标进行实时检测。
- UI界面模块:基于PyQt5构建的图形界面,用户可以选择待检测的文件、调整灵敏度参数并查看实时检测结果。
- 数据存储模块:使用MySQL数据库存储检测结