【论文解读|DASSFA】PERM: Pre-training Question Embeddings via Relation Map for Improving Knowledge Tracing

在这里插入图片描述
基于关系图预训练问题嵌入以改进知识追踪模型

三篇基于Map的KT模型:

【注】本文依然没有考虑知识点之间的先序关系

摘要

针对教育问题的学习信息嵌入(表示)是在线学习系统的核心。目前的解决方案主要是通过问题-概念二部图学习问题嵌入。然而,学生-问题-概念的全局关系没有得到充分利用。此外,学生-问题和学生-概念互动中更细粒度的语义信息也应该进一步揭示出来。为此,本文提出了一种基于关系图的知识追踪预训练问题嵌入方法,即PERM。在两个真实数据集上进行的大量实验表明,PERM具有较高的表达能力,使知识追踪方法能够有效预测学生的学习表现。

1 引言

知识追踪(Knowledge tracing, KT)是CAE系统中的一项重要任务,旨在根据学生的学习历史对其知识熟练程度进行建模。具体来说,KT的目标是根据一个学生之前的所有回答日志来预测他/她是否能正确地回答下一个问题。

为了解决KT问题,人们做出了很多努力,基本上可以分为三大类:基于记忆的方法、基于注意的方法和基于图的方法。首先,在基于内存的方法中,DKT [8] a和DKVMN[11]是两种典型的方法,它们试图从单个学生响应日志中学习顺序模式。其次,提出了一些基于注意的方法,包括SAKT [6], RKT[7]和AKT[3],并改善了这些基于记忆的方法的性能。第三,基于图的方法可以在某些图上挖掘问题和概念之间的复杂交互,如GKT[5]和GIKT[10]。

虽然现有的方法已经将问题嵌入用于KT,但这些问题嵌入的全面性还不够。更具体地说,这一过程存在两个问题。首先,对学生-问题-概念的全局关系的研究还不够充分。其次,还需要进一步从学生-问题互动和学生-概念互动中提取更细粒度的语义信息。因此,我们努力进一步最大限度地提取和挖掘学生-问题-概念互动中丰富的底层语义信息,以解决上述两个问题。然而,由于学生-问题-概念交互的复杂性,面临着挑战。一方面,将学生-问题-概念的交互看作一个图,由于不同类型的节点和边具有高度的异质性,很难进一步挖掘图上的语义信息。另一方面,交互图的结构非常复杂,层次结构也非常明确,这表明利用学生问题-概念交互图建模问题嵌入是非常具有挑战性的。

考虑到这些问题,本文提出了一种提高知识追踪能力的预训练方法,即关系图预训练问题嵌入法(PERM),学习每个问题的一般嵌入。具体而言,从两个语义角度(共现和答案一致),我们首先利用问题(和概念)之间的关系映射作为问题和概念的先验和初始嵌入。然后,从学生-问题-概念互动中提取问题-概念二部图,利用两级注意聚合机制与先验信息进行融合,实现问题和概念的更新嵌入。此外,为了获得最终的问题嵌入,根据更新的问题嵌入、更新的概念嵌入和问题的特征向量对问题的难度信息进行建模。最后,在两个真实数据集上进行的大量实验清楚地表明,PERM具有更高的表达能力,使KT方法能够有效地预测学生的表现

综上所述,我们的主要贡献如下:

  • (1)从共现和答案-一致两个角度,利用问题(和概念)之间的两个关系映射作为先验;
  • (2)为综合建模问题嵌入困难,利用与先验的两级注意机制,将问题信息、问题相关概念和问题特征有机融合;
  • (3)在真实数据集上进行了大量的实验,包括定量比较、定性分析和案例分析,验证了PERM的有效性和优越性。

3 方法

3.1 关系图挖掘

在共现视角上,我们关注问题-概念的互动,致力于为所有问题选择同构邻居。

4 实验

为了评价我们的方法,我们在KT中两个广泛使用的数据集上进行了实验。一个是ASSISTment09,另一个数据集是Junyi。具体来说,对于ASSISTment09数据集,我们删除了尝试少于15个类似于[1]的响应日志的学生,同时删除了相关概念少于2个的问题。此外,对于俊一数据集,为了降低计算成本,我们过滤了响应日志少于500的学生,并进一步将一些类似的概念(如添加1、添加2、添加3)融合到一个概念(如添加)中,以保证每个概念都有足够的相关问题进行嵌入。

4.2 实验设置

为了证明我们的方法对主流KT模型的改进,并验证我们提出的方法的有效性,我们将其与一些基线进行了比较。

具体而言,我们首先将其应用于基于记忆的模型(DKT, DKVMN)、基于注意的模型(skt, AKT)和基于图形的模型(GIKT)等几种KT模型,然后将其与最先进的不含文本信息的问题嵌入方法PEBG进行比较。

4.3 结果比较

表1报告了在ASSISTment09上学生成绩预测任务中所有方法的总体性能,最好的分数用粗体表示。

从结果中,我们总结了几个重要的观察结果。首先,在所有数据稀疏度下,几乎所有这些PERM+方法的性能都优于基线。其次,PERM+DKT和PERM+DKVMN的表现始终优于PEBG+DKT和PEBG+DKVMN。最后,几乎所有的PERM+方法都优于基线。

在这里插入图片描述
表1报告了在ASSISTment09上学生成绩预测任务中所有方法的总体性能,最好的分数用粗体表示。从结果中,我们总结了几个重要的观察结果。首先,在所有数据稀疏度下,几乎所有这些PERM+方法的性能都优于基线。其次,PERM+DKT和PERM+DKVMN的表现始终优于PEBG+DKT和PEBG+DKVMN。最后,几乎所有的PERM+方法都优于基线。

5 结论

本文提出了一种新的PERM方法,着重于挖掘语义关系映射,并在两个视角语义下进一步融合问题和概念的嵌入,以获得最终的问题嵌入,从而提高KT方法的性能。在两个真实数据集上进行的大量实验表明,PERM具有更高的表达能力,使KT方法能够有效地预测学生的表现。


总结

有一定借鉴意义
为啥没有模型图。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值