SKlearn中的svm超参数总结

本文详细介绍了SKlearn中SVM模型的参数及其作用,包括惩罚系数C、核函数类型等,并探讨了如何通过调整这些参数来优化模型表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SKlearn中好多机器学习模型已经做好了,使用的时候直接调用就可以,俗称“调包侠”,我觉得挺有意思,这样大大降低了机器学习的门槛,最近几天一直在使用svm训练模型,其中数据样本不均衡以及打分一直上不去,特征工程也调了好久,现在开始对svm的一些参数进行调试,看看模型会不会变得更好。

  1. SVC参数解释 
  2. (1)C: 目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0; 
  3. (2)kernel:参数选择有RBF, Linear, Poly, Sigmoid, 默认的是"RBF"; 
  4. (3)degree:if you choose 'Poly' in param 2, this is effective, degree决定了多项式的最高次幂; 
  5. (4)gamma:核函数的系数('Poly', 'RBF' and 'Sigmoid'), 默认是gamma = 1 / n_features; 
  6. (5)coef0:核函数中的独立项,'RBF' and 'Poly'有效; 
  7. (6)probablity: 可能性估计是否使用(true or false); 
  8. (7)shrinking:是否进行启发式; 
  9. (8)tol(default = 1e - 3): svm结束标准的精度; 
  10. (9)cache_size: 制定训练所需要的内存(以MB为单位); 
  11. (10)class_weight: 每个类所占据的权重,同的类设置同的惩罚参数C, 缺省的话自适应; 
  12. (11)verbose: 跟多线程有关,大明白啥意思具体; 
  13. (12)max_iter: 最大迭代次数,default = 1, if max_iter = -1, no limited; 
  14. (13)decision_function_shape : ‘ovo’ 一对一, ‘ovr’ 多对多  or None 无, default=None 
  15. (14)random_state :用于概率估计的数据重排时的伪随机数生成器的种子。 

  16. 提示:7,8,9一般考虑。 
明白了这些可以选择调整的超参数,后续我们可以尝试在特征工程和超参数调整使得模型训练的更好。
### 回答1: SVM是一种常用的机器学习算法,而sklearn.svm.svc是SVM算法在Python中的实现。超参数调参是指在使用SVM算法时,调整一些参数以达到更好的性能。常见的超参数包括C、kernel、gamma等。调参的目的是使模型更准确、更稳定。 ### 回答2: 在使用sklearn中的支持向量机分类模型SVC时,超参数调参是一个非常重要的步骤。超参数的设定往往影响着模型的拟合效果和泛化能力,因此对于不同的数据集和问题,需要进行不同的超参数设定。下面将从SVC模型的主要超参数超参数调参方法两个方面进行介绍。 一、SVC模型的主要超参数: 1.内核函数(kernel):SVC支持多种核函数,包括线性核函数、多项式核函数、径向基核函数、sigmoid核函数等。 2.惩罚参数(C):它是为了对损失函数进行调节而引入的,C越小,对误分类的惩罚程度也就越小,允许更多的样本误分类,是模型的偏差较大,方差较小,容易欠拟合;C越大,对误分类的惩罚程度也就越大,强制模型尽可能正确地分类每个样本,是模型的偏差较小,方差较大,容易过拟合。 3.核函数参数(gamma):它与核函数有关,主要用于控制样本点与决策边界的“松弛度”(决策边界向外延伸的距离),gamma越小,决策边界的曲线越平滑,模型的复杂度相对减小,泛化能力相对增强,是模型的约束力强,容易欠拟合;gamma越大,决策边界的曲线越复杂,模型的复杂度相对加强,精度相对增加,但泛化能力会减弱,是模型的约束力小,容易过拟合。 二、超参数调参方法: 1.网格搜索(Grid Search):常见的方法是穷举搜索超参数的所有组合,计算模型在交叉验证的训练集上的精度或者其他评价指标,找到最佳的超参数组合。由于不同超参数采用的取值范围可能存在差异性,因此用网格搜索并不一定能取得最优结果,其计算开销也很大。 2.随机搜索(Randomized Search):与网格搜索相比,随机搜索是从超参数的分布中采样,每次只搜索少量的超参数组合,相对于网格搜索,它可以在较少时间内训练更多的模型,从而探索更多的超参数组合,具有一定的优势。 3.贝叶斯优化(Bayesian Optimization):这种方法是试图将搜索过程转变为一个优化问题,通过不断学习、更新一个超参数的先验分布,来指引搜索方向,能够更有效地探索超参数空间中的好的区域,有可能取得更好的结果,但是需要一定的理论支持以及计算开销和技巧。 总而言之,SVC是一种强大的分类模型,超参数调参不同方法的运用,将可以取得更好的模型性能。 ### 回答3: 在使用sklearn.svm.svc进行分类时,设置合适的超参数值会直接影响模型的预测能力和训练效率,因此超参数调参是非常重要的。常见的超参数包括C、kernel、gamma、degree、coef0等。 C是正则化系数,在参数调优中通常使用交叉验证来进行选择,确保虽然满足所有的数据拟合,但不是过拟合。常见的取值范围为10的n次方(n为负数)至10的n次方。 kernel参数指定可以使用的内核类型:‘linear’、‘poly’、‘rbf’、‘sigmoid’、‘precomputed'等。其中,‘rbf’和‘poly’内核方法比较常用。对于‘rbf’内核,需要调整的一个参数是gamma。gamma越大,模型的受较远的数据点影响的程度就越大;gamma越小,模型的受较远的数据点影响的程度就越小。一般建议使用默认的gamma值,如果存在过拟合问题,可以适当调小gamma值。对于‘poly’内核,还需要调整的一个参数是degree,即多项式的次数。 coef0系数是在多项式内核中与高阶项相关的系数。增加这个参数会影响模型的拟合效果,可能会增加训练时间,但如果过大,则可能会导致模型的过拟合。可以使用グリッド搜索(GridSearchCV)函数来通过交叉验证实现参数的自动调整。 总的来说,调整SVM模型的超参数通常是一种实验性的过程,需要多次调整参数进行模型的训练和评估,找到最优的超参数组合,并针对数据进行优化调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Soyoger

听说打赏的都进了福布斯排行榜。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值