Pytorch网络参数初始化

本文介绍了PyTorch中神经网络参数初始化的重要性,并详细讲解了两种常见方法:一是利用torch.nn.init模块的内置初始化函数,如xavier_uniform;二是通过numpy生成随机数,然后转换为tensor进行自定义初始化,例如设置为均值0、方差0.5的正态分布。这两种方法对于模型的性能和收敛有着直接影响。
摘要由CSDN通过智能技术生成

Pytorch网络参数初始化@Elaine
神经网络的初始化是训练流程的重要基础环节,会对模型的性能、收敛性、收敛速度等产生重要影响。
Pytorch中常见的两种初始化操作
(1)使用pytorch内置的 torch.nn.init 方法
正态分布、均匀分布、xavier初始化、kaiming初始化都已经实现,可以直接使用。具体详见PyTorch 中 torch.nn.init 中文文档。

init.xavier_uniform(net1[0].weight)
(2) Numpy
对于自定义的初始化方法,有时tensor的功能不如numpy强大灵活,故可以借助numpy实现初始化方法,再转换到tensor上使用。
for layer in net1.modules():
    if isinstance(layer, nn.Linear): # 判断是否是线性层
        param_shape = layer.weight.shape
        layer.weight.data = torch.from_numpy(np.random.normal(0, 0.5, size=param_shape)) 
        # 定义为均值为 0,方差为 0.5 的正态分布
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值