概率机器人(1)

概率机器人的核心就是由传感器数据来估计状态的思路。状态估计解决的是从不能直接观测但可以推断的传感器数据中估计数量的问题.

 首先介绍一维正态分布的概率密度函数:

                                                         p(x) = (2\pi \sigma ^{2})^{-\frac{1}{2}}\exp \left \{ -\frac{1}{2}\frac{(x-u)^{2}}{\sigma ^{2}}\right \}                                                                              (1)

我们经常把它记为N = (x; u, \sigma ^{2}),  他指出了随机变量及其均值和方差。但是x经常是一个多维矢量。多元正态分布的密度函数有一下形式:

                                                p(x) = det(2\pi\varepsilon )^{-\frac{1}{2}}\exp \left \{ -\frac{1}{2}(x-u)^{T} {\varepsilon^{-1}(x - u)}\right \}                                                                 (2)

其中u为均值矢量;\varepsilon为一个半正定对称矩阵称为协方差矩阵。\varepsilon ^{-1}在SLAM中我们称为信息矩阵。首先解释下半正定对称矩阵,协方差矩阵,信息矩阵以及反对称矩阵。

1)半正定对称矩阵:\varepsilon是由变量之间的协方差来求得的,即对于x = [x_{1}, x_{2}, x_{3}, \cdot, \cdot, \cdot ]^{T}这一组随机变量求他们之间的协方差,  

                                              \varepsilon = \begin{bmatrix} cov(x_{1},x_{1}), cov(x_{1},x_{2}), \cdot, \cdot, \cdot, cov(x_{1},x_{n}) \\ cov(x_{2},x_{1}), cov(x_{2},x_{2}), \cdot, \cdot, \cdot, cov(x_{2},x_{n}) \\ cov(x_{3},x_{1}), cov(x_{3},x_{2}), \cdot, \cdot, \cdot, cov(x_{3},x_{n}) \\ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ cov(x_{n},x_{1}), cov(x_{n},x_{2}), \cdot, \cdot, \cdot, cov(x_{n},x_{n}) \end{bmatrix}                                                                       (3)

我们知道二个变量之间的协方差跟他们的顺序无关,所以该矩阵是一个对称矩阵,变量与自己的协方差是等于该变量的方差,该矩阵的元素是非负的所以为半正定。

2)信息矩阵:目前还不明白。

3)反对称矩阵:初次接触反对称矩阵是在《SLAM十四讲》中两个向量之间的叉乘

                                     a * b = \begin{bmatrix} i & j & k\\ a_{1} & a_{2} & a_{3} \\ b_{1}&b_{2} & b_{3} \end{bmatrix}=\begin{bmatrix} a{_{2}}*b{_{3}}-a{_{3}}*b{_{2}}\\ a{_{3}}*b{_{1}}-a{_{1}}*b{_{3}}\\ a{_{1}}*b{_{2}}-a{_{2}}*b_{1} \end{bmatrix}=\begin{bmatrix} 0 & -a_{3} &a{_{2}} \\ a{_{3}}& 0 &-a_{1} \\ -a_{2}& a_{1} & 0 \end{bmatrix}b=a^{\wedge }b                                  (4)

其中a^{\wedge }就是一个反对称矩阵。

两个随机变量X和Y的联合分布:

                                                      p(x,y) = p(X=x,Y=y)                                                                                       (5)

若这二个变量是独立的,则有:

                                                          p(x,y)=p(x)p(y)                                                                                                 (6)

接下来就是条件概率:

                                                          p(x|y)=\frac{p(x,y)}{p(y)}                                                                                                     (7)

同样若两个变量独立,这里就不写了;通过(5-7)我们得到全概率公式:

                                                    p(x) = \sum_{y}p(x|y)p(y)                                                                                                 (8)

                                                   p(x)=\int p(x|y)p(y)dy                                                                                                (9)

(8)是离散情况下,(9)是连续情况。

贝叶斯准则,该定理将条件概率p(x|y)与其逆概率p(y|x)联系起来同样我们得到贝叶斯公式:

                                                    p(x|y)=\frac{p(y|x)p(x)}{p(y)}=\frac{p(y|x)p(x)}{\sum _{x^{'}}p(y|x^{'})*p(x^{'})}                                                            (10)

                                                   p(x|y)=\frac{p(y|x)p(x)}{p(y)}=\frac{p(y|x)p(x)}{\int p(y|x^{'})*p(x^{'})dx^{'}}                                                            (11)

其中p(x)称为先验概率分布,p(y|x)称为似然,而P(x|y)则称为后验概率,我们可以看到贝叶斯公式的分母p(y)它是不依赖于x的,所以贝叶斯公式也经常写为

                                                                  p(x|y) = \eta p(y|x)p(x)                                                                                   (12)

可以看到,以任意随机变量(如变量Z)为条件的迄今为止讨论过的条件概率都非常巧妙。例如,关于Z = z的贝叶斯公式为:

                                                           p(x|y,z)=\frac{p(y|x,z)p(x|z)}{p(y|z)}                                                                                (13)

许多概率算法都要求计算概率分布的特性或者统计,随机变量X的期望值可以由下式给定:

                                                                      E(x) = \sum_{x}xp(x)                                                                                     (14)

                                                                     E(x) = \int xp(x)dx                                                                                   (15)

                                                                E(ax+b)=aE(x)+b                                                                                 (16)

                                                   Cov(x)=E(x-E(x))^{2}=E(x^{2})-E(x)^{2}                                                             (17)

置信分布,概率机器人通过条件概率分布表示置信度。对于真实的状态,置信度分布为每一个可能的假设分配一个概率。置信度分布是以可获得数据为条件的关于状态变量的后验概率:

                                                              bel(x_{t}) = p(x_{t}|z_{1:t},u_{1:t})                                                                                    (18)

默认置信度是在综合了测量z_{t}后得到的,有时,可以证明在刚刚执行完控制u_{t}之后,综合z_{t}之前计算后验是有用的。这样的后验可以表示为:

                                                            \overline{bel}(x_{t})=p(xt|z_{1:t-1},u_{1:t})                                                                                  (19)

在概率滤波的框架下,该概率被称为预测。\overline{bel}(x_{t})是基于以前状态的后验,在综合时刻t的测量之间,预测了时刻t的状态。由\overline{bel}(x_{t})计算bel(x_{t})称为修正或者测量更新。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值