Gauss、Stokes、Green公式

本文概述了矢量微积分中的三个核心定理:Gauss散度定理、Stokes定理和Green定理的两种形式。这些定理分别描述了如何从边界条件推断内部区域的性质,包括散度积分、旋度积分和环量积分的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  以下 F F F为向量场, n \mathbf{n} n为法向量, τ \mathbf{\tau} τ为切向量。

1. Gauss

∫ V ∇ ⋅ F d v = ∫ S F ⋅ d A = ∫ S F ⋅ n d A \int_{V}\nabla\cdot Fdv=\int_{S}F\cdot d\mathbf{A}=\int_{S}F\cdot \mathbf{n}dA VFdv=SFdA=SFndA

2. Stokes

∫ S ∇ × F ⋅ d A = ∫ S ∇ × F ⋅ n d A = ∮ ∂ S F ⋅ d l = ∮ ∂ S F ⋅ τ d l \int_{S}\nabla\times F\cdot d\mathbf{A}=\int_{S}\nabla\times F\cdot \mathbf{n}dA=\oint_{\partial S}F\cdot d\mathbf{l}=\oint_{\partial S}F\cdot \mathbf{\tau}dl S×FdA=S×FndA=SFdl=SFτdl

3. Green
 3.1 散度形式

∫ S ∇ ⋅ F d A = ∮ ∂ S F ⋅ d l = ∫ ∂ S F ⋅ n d l \int_{S}\nabla\cdot F dA=\oint_{\partial S}F\cdot d\mathbf{l}=\int_{\partial S}F\cdot\mathbf{n}dl SFdA=SFdl=SFndl

 3.2 旋度形式

∫ S ∇ × F ⋅ d A = ∮ ∂ S F ⋅ d l = ∮ ∂ S F ⋅ τ d l \int_{S}\nabla\times F\cdot d\mathbf{A}=\oint_{\partial S}F\cdot d\mathbf{l}=\oint_{\partial S}F\cdot \mathbf{\tau}dl S×FdA=SFdl=SFτdl

4. 说明

  可理解为内部区域的性质通过边界来反映,即:

  1. Gauss:内部体积元的散度积分等于表面通量积分
  2. Stokes:表面面积元矢量的旋度积分等于边界的环量积分
  3. Green:两个形式分别为以上的退化形式
Gauss 求积公式是一种数值积分的方法,特别是高斯型求积公式,其中最著名的是高斯-勒让德(Gaussian-Legendre)积分规则。在 MATLAB 中,你可以使用 `integral` 函数或 `quadgk`(Quadrature Gauss-Kronrod)函数来进行这种精确计算。 如果你想编写自己的高斯积分器,可以使用以下步骤: 1. **选择节点**(weights and points): 高斯积分需要一组特定的节点(x 值),以及对应的权重(w 值)。比如一阶到五阶的高斯节点和权重可以通过 MATLAB 内置函数 `gauss` 得到。 ```matlab [x, w] = gauss(n); % n 是你想要的节点数,如 n=1,2,3...对应不同阶次的高斯积分 ``` 2. **构建函数**: 定义你要积分的函数 f(x)。 3. **计算积分**: 将函数值乘以权重,然后对所有节点进行加权平均。 ```matlab function_value = f(x); approx_integral = sum(w .* function_value); ``` 4. **错误估计** (可选): 如果需要,还可以利用相邻阶次的积分规则得到误差估计。 5. **完整代码示例**: ```matlab function integral_approx = gauss_quad(f, n) % 使用n阶的高斯积分规则 [x, w] = gauss(n); % 计算每个节点的函数值 function_values = feval(f, x); % 计算积分 integral_approx = sum(w .* function_values); % 可选: 添加误差估计或其他分析 end % 测试函数 f_to_integrate = @(x) sin(x)^2; % 替换为你的实际函数 integral_value = gauss_quad(f_to_integrate, 4); % 例如四阶高斯积分 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值