Pytorch学习笔记【6】:简单神经网络实现分类

这篇博客主要介绍了如何使用PyTorch构建一个简单的神经网络进行分类任务,详细注释解读了代码实现过程。
摘要由CSDN通过智能技术生成

注意看代码注释,所有的解析都写在代码注释 里面了

 

1. 代码:

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.autograd import Variable

"""
    torch.normal(means, std, out=None)
    参数:
        means (Tensor) – 均值
        std (Tensor) – 标准差
        out (Tensor) – 可选的输出张量
    返回一个张量,包含从给定参数means,std的离散正态分布中抽取随机数。 
    均值means是一个张量,包含每个输出元素相关的正态分布的均值。 
    std是一个张量,包含每个输出元素相关的正态分布的标准差。 
    均值和标准差的形状不须匹配,但每个张量的元素个数须相同。
    
"""
# 先生成数据,x0和X1实际上是二维的数据,有着每一个点(x,y)的信息,y0,y1是两种分类
n_data = torch.ones(100,2) # 这是二维,并且是100行2列
print(n_data)
x0 = torch.normal(2*n_data,1)
print(x0)
y0 = torch.zeros(100)  # 标注分类为0,这是1行100列。你自己输出来看一下就知道了
print(y0)
x1 = torch.normal(-2*n_data,1)
print(x1)
y1 = torch.ones(100)  # 标注分类为1。相当于哪个标注为1,哪个为真这样。
print(y1)

"""
torch.cat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值