注意看代码注释,所有的解析都写在代码注释 里面了
1. 代码:
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.autograd import Variable
"""
torch.normal(means, std, out=None)
参数:
means (Tensor) – 均值
std (Tensor) – 标准差
out (Tensor) – 可选的输出张量
返回一个张量,包含从给定参数means,std的离散正态分布中抽取随机数。
均值means是一个张量,包含每个输出元素相关的正态分布的均值。
std是一个张量,包含每个输出元素相关的正态分布的标准差。
均值和标准差的形状不须匹配,但每个张量的元素个数须相同。
"""
# 先生成数据,x0和X1实际上是二维的数据,有着每一个点(x,y)的信息,y0,y1是两种分类
n_data = torch.ones(100,2) # 这是二维,并且是100行2列
print(n_data)
x0 = torch.normal(2*n_data,1)
print(x0)
y0 = torch.zeros(100) # 标注分类为0,这是1行100列。你自己输出来看一下就知道了
print(y0)
x1 = torch.normal(-2*n_data,1)
print(x1)
y1 = torch.ones(100) # 标注分类为1。相当于哪个标注为1,哪个为真这样。
print(y1)
"""
torch.cat