PyTorch 入门实战(四)——利用Torch.nn构建卷积神经网络

本文介绍了如何使用PyTorch的nn.Module构建卷积神经网络,包括卷积层、池化层、批标准化层、ReLU激活函数、全连接层、Dropout等,以VGG-16为例展示了网络构建过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概念

1.需要声明的是构建卷积神经网络需要有一定的面向对象基础,因为所有建立的模型结构都是继承自nn.Module这个基类所完成的

2.我们需要新建一个子类,并且构造函数前向传播等方法需要被重写才能实现自己编写的网络

3.我们还需要知道torch中卷积层池化层全连接层等部分的编写方法和拼接方式

二、使用nn.Module创建一个网络框架

1.声

### B站 GCN 图卷积网络 课程推荐 #### 推荐理由与特点 为了帮助理解GCN及其应用,B站在多个方面提供了丰富的资源。这些视频教程不仅涵盖了理论基础,还涉及实际案例分析以及如何利用工具实现具体项目。 #### 资源列表 1. **《图神经网络入门》系列** - 讲师通过生动形象的例子介绍了什么是图数据结构、为什么需要使用GCN来处理这类特殊的数据形式,并深入浅出地讲解了GCN的工作原理。 - 特别适合初学者快速掌握基本概念并建立起直觉性的认识[^1]。 2. **实战型课程——基于PyTorch实现GCN** - 针对有一定编程经验的学习者设计,该课程重点在于指导观众动手实践,从零构建自己的GCN模型。 - 学员可以在跟随讲师的过程中完成一系列有趣的实验任务,比如社交网络中的好友关系预测等。 3. **高级专题研讨班:GCNs的应用拓展** - 对于那些希望深入了解GCN在不同行业内的应用场景的人来说,这是一个非常好的选择。 - 主讲嘉宾会分享大量前沿研究成果,包括但不限于推荐系统优化、交通流量预估等领域内取得的成功案例研究。 4. **可视化教学——Zachary空手道俱乐部实例解析** - 利用动画效果展示GNN训练过程的变化趋势,使抽象的概念变得易于理解。 - 此外还会探讨如何评估模型性能及调整参数以获得更好的结果[^2]。 5. **Keras框架下的GCN开发指南** - 如果更倾向于Python生态系统,则可以考虑这个专注于介绍如何借助Keras这一高效便捷的API来进行GCN建模的教学材料。 - 它强调了简易性和灵活性之间的平衡,使得即使是新手也能迅速上手创建复杂的深度学习架构[^3]。 ```python import torch from torch_geometric.nn import GCNConv class Net(torch.nn.Module): def __init__(self, input_channels, hidden_channels, output_channels): super(Net, self).__init__() self.conv1 = GCNConv(input_channels, hidden_channels) self.conv2 = GCNConv(hidden_channels, output_channels) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = torch.relu(x) x = self.conv2(x, edge_index) return x ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老兵安帕赫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值