凸优化简介10

本文介绍了凸优化中的光滑函数和强凸函数概念。首先,详细阐述了FL1,1(Rn)类函数,即具有Lipschitz连续梯度的函数,并通过多个定理和证明探讨了其性质。接着,讨论了FL2,1(R2)类函数,特别是展示了二次连续可微函数属于此类的充分必要条件。最后,定义了强凸函数并证明了其特性,包括等价定义和一些典型的强凸函数例子。" 127627753,7930366,如何有效搜索和理解综述文献,"['文献查找', '学术研究', '论文写作', '科研资源', '信息检索']
摘要由CSDN通过智能技术生成

光滑函数和强凸函数

1. F L 1 , 1 ( R n ) \mathfrak{F}_L^{1,1}(\mathbb{R}^n) FL1,1(Rn)类函数

和一般的非线性函数一样,可微性不能保证凸函数的任何特别的拓扑属性。因此,需要考虑Lipschitz连续导数的问题类。考虑凸函数类 F L k , l ( R n ) \mathfrak{F}_{L}^{k,l}(\mathbb{R}^n) FLk,l(Rn),下面主要是属于 F L 1 , 1 ( R n ) \mathfrak{F}_L^{1,1}(\mathbb{R}^n) FL1,1(Rn)类的函数,该类函数具有Lipschitz连续梯度。

定理:如果对于所有的 x , y ∈ R n x,y\in \mathbb{R}^n x,yRn a ∈ [ 0 , 1 ] a\in [0,1] a[0,1],则下面任一条件等价于包含关系 f ∈ F L 1 , 1 ( R n ) f\in \mathfrak{F}_{L}^{1,1}(\mathbb{R}^n) fFL1,1(Rn)

  1. 0 ≤ f ( y ) − f ( x ) − ⟨ ∇ f ( x ) , y − x ⟩ ≤ L 2 ∥ x − y ∥ 2 0\leq f(y)-f(x)-\langle \nabla f(x),y-x\rangle\leq \frac{L}{2}\|x-y\|^2 0f(y)f(x)f(x),yx2Lxy2
  2. f ( x ) + ⟨ ∇ f ( x ) , y − x ⟩ + 1 2 L ∥ ∇ f ( x ) − ∇ f ( y ) ∥ 2 ≤ f ( y ) f(x)+\langle \nabla f(x), y-x\rangle+\frac{1}{2L}\|\nabla f(x)-\nabla f(y)\|^2\leq f(y) f(x)+f(x),yx+2L1f(x)f(y)2f(y)
  3. 1 L ∥ ∇ f ( x ) − ∇ f ( y ) ∥ 2 ≤ ⟨ ∇ f ( x ) − ∇ f ( y ) , x − y ⟩ \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|^2\leq \langle \nabla f(x)-\nabla f(y),x-y\rangle L1f(x)f(y)2f(x)f(y),xy
  4. ⟨ ∇ f ( x ) − ∇ f ( y ) , x − y ⟩ ≤ L ∥ x − y ∥ 2 \langle \nabla f(x)-\nabla f(y),x-y\rangle \leq L \|x-y\|^2 f(x)f(y),xyLxy2
  5. a f ( x ) + ( 1 − a ) f ( y ) ≥ f ( a x + ( 1 − a ) y ) + a ( 1 − a ) 2 L ∥ ∇ f ( x ) − ∇ f ( y ) ∥ 2 af(x)+(1-a)f(y)\geq f(ax+(1-a)y)+\frac{a(1-a)}{2L}\|\nabla f(x)-\nabla f(y)\|^2 af(x)+(1a)f(y)f(ax+(1a)y)+2La(1a)f(x)f(y)2
  6. a f ( x ) + ( 1 − a ) f ( y ) ≤ f ( a x + ( 1 − a ) y ) + a ( 1 − a ) L 2 ∥ x − y ∥ 2 af(x)+(1-a)f(y)\leq f(ax+(1-a)y)+a(1-a)\frac{L}{2}\|x-y\|^2 af(x)+(1a)f(y)f(ax+(1a)y)+a(1a)2Lxy2.

证明1:参考凸优化简介4第2部分的推导过程
证明2:设函数 ϕ ( y ) = f ( y ) − ⟨ ∇ f ( x 0 ) , y ⟩ \phi(y)=f(y)-\langle \nabla f(x_0),y\rangle ϕ(y)=f(y)f(x0),y,设最优值点是 y ∗ y^* y,根据式1得到:
ϕ ( y ∗ ) ≤ ϕ ( y − 1 L ϕ ′ ( y ) ) ≤ ϕ ( y ) − 1 2 L ∥ ϕ ′ ( y ) ∥ 2 \phi(y^*)\leq \phi(y-\frac{1}{L}\phi'(y))\leq \phi(y)-\frac{1}{2L}\|\phi'(y)\|^2 ϕ(y)ϕ(yL1ϕ(y))ϕ(y)2L1ϕ(y)2
ϕ ( y ∗ ) ≤ ϕ ( y ) − 1 2 L ∥ ϕ ′ ( y ) ∥ 2 ⇒ f ( x 0 ) − ⟨ ∇ f ( x 0 ) , x 0 ⟩ ≤ f ( y ) − ⟨ ∇ f ( x 0 ) , y ⟩ − 1 2 L ∥ ϕ ′ ( y ) ∥ 2 ⇒ f ( x 0 ) + ⟨ f ( x 0 ) , y − x 0 ⟩ + 1 2 L ∥ ϕ ′ ( y ) ∥ 2 ≤ f (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值