凸优化简介4

本文介绍了可微函数的凸优化分类,包括CL1,1(Rn)类和CM2,2(Rn)类函数的特性。CL1,1(Rn)函数满足∇f(y)−∇f(x)−∇2f(x)(y−x)∥≤2L∥y−x∥2,而CM2,2(Rn)函数有∇2f(x)−MrIn≺∇2f(y)≺∇2f(x)+MrIn的性质。" 107375961,7419327,CSS滚动技巧:scroll-behavior与scroll-snap-align解析,"['CSS', '前端开发', '网页布局']
摘要由CSDN通过智能技术生成

可微函数的分类

1. 基本类别

该类别的函数为连续的且满足Lipschitz条件的函数类。(注:Lipschitz条件为,设函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上满足如下两个条件:(1) 当 x ∈ [ a , b ] x\in [a,b] x[a,b]时, f ( x ) ∈ [ a , b ] f(x)\in [a,b] f(x)[a,b];(2) ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ L ∣ x 1 − x 2 ∣ , ∀ x 1 , x 2 ∈ [ a , b ] |f(x_1)-f(x_2)| \leq L|x_1-x_2|, \forall x_1,x_2 \in [a,b] f(x1)f(x2)Lx1x2,x1,x2[a,b])。
Q Q Q R n \mathbb{R}^n Rn的子集,若函数满足如下两个条件:
(1) 任意 f ∈ C L k , p ( Q ) f\in C_{L}^{k,p}(Q) fCLk,p(Q) Q Q Q上是 k k k次连续可微的(即前 k k k阶导都是连续的);
(2) 第 p p p次导数在 Q Q Q上是Lipschitz连续的,即对所有的 x , y ∈ Q x,y \in Q x,yQ,满足 ∥ f ( p ) ( x ) − f ( p ) ( y ) ∥ ≤ L ∥ x − y ∥ \|f^{(p)}(x)-f^{(p)}(y)\|\leq L\|x-y\| f(p)(x)f(p)(y)Lxy
则该函数类记为 C L k , p ( Q ) C_L^{k,p}(Q) CLk,p(Q)
该类函数有如下性质:
(1) p ≤ k p \leq k pk。因为该类函数前 k k k阶导数都是连续的,因此满足条件2的第 p p p次导数不会大于 k k k
(2) 如果 q ≥ k q\geq k qk,那么 C L q , p ⊆ C L k , p ( Q ) C_L^{q,p} \subseteq C_L^{k,p}(Q) CLq,pCLk,p(Q)。因为Lipschitz连续的要求阶更高,因此是子集关系;
(3)如果 f 1 ∈ C L 1 k , p ( Q ) , f 2 ∈ C L 2 k , p ( Q ) f_1\in C_{L_1}^{k,p}(Q),f_2\in C_{L_2}^{k,p}(Q) f1CL1k,p(Q),f2CL2k,p(Q) α , β ∈ R \alpha,\beta\in \mathbb{R} α,βR,那么对于 L 3 = ∣ α ∣ L 1 + ∣ β ∣ L 2 L_3=|\alpha|L_1+|\beta|L_2 L3=αL1+βL2,有 α f 1 + β f 2 ∈ C L 3 k , p ( Q ) \alpha f_1+\beta f_2 \in C_{L_3}^{k,p}(Q) αf1+βf2CL3k,p(Q)

2. C L 1 , 1 ( R n ) 类 C_L^{1,1}(\mathbb{R}^n)类 CL1,1(Rn)

该类函数为基本类的特殊情况, C L 1 , 1 ( R ) n C_L^{1,1}(\mathbb{R})^n CL1,1(R)n对于所有的 x , y ∈ R n x,y\in \mathbb{R}^n x,yRn ∥ ▽ f ( x ) − ▽ f ( y ) ∥ ≤ L ∥ x − y ∥ \|\bigtriangledown f(x)-\bigtriangledown f(y)\|\leq L \|x-y\| f(x)f(y)Lxy

函数 f ( x ) f(x) f(x)属于 C L 2 , 1 ( R n ) ⊂ C L 1 , 1 ( R n ) C_{L}^{2,1}(\mathbb{R}^n)\subset C_{L}^{1,1}(\mathbb{R}^n) CL2,1(Rn)CL

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值