十分钟搭建属于自己的 DeepSeek 知识库!完全开源、离线部署方案详解

还在为担心公司机密文档上传到云端吗?本教程将带你使用完全开源的工具,在本地搭建一个基于 RAG (Retrieval-Augmented Generation) 技术的智能知识库系统。不仅完全离线,还能保护隐私,让你的文档秘密更有保障!
在这里插入图片描述

🛠️ 环境准备

在开始之前,请确保你的系统满足以下要求:

1. 安装 Ollama

  1. 访问 Ollama 官网 下载并安装对应系统版本
  2. 验证安装:
ollama --version

2. 下载必要的模型

我们需要两个模型:

  • deepseek-r1:7b 用于对话生成
  • nomic-embed-text 用于文本向量化

执行以下命令下载模型:

# 下载对话模型
ollama pull deepseek-r1:7b

# 下载向量模型  
ollama pull nomic-embed-text

🔧 部署知识库系统

1. 克隆项目

git clone https://github.com/rag-web-ui/rag-web-ui.git
cd rag-web-ui

2. 配置环境变量

复制环境变量模板并编辑:

cp .env.example .env

编辑 .env 文件,配置如下:

# LLM 配置
CHAT_PROVIDER=ollama
OLLAMA_API_BASE=http://host.docker.internal:11434
OLLAMA_MODEL=deepseek-r1:7b
# Embedding 配置
EMBEDDINGS_PROVIDER=ollama
OLLAMA_EMBEDDINGS_MODEL=nomic-embed-text

# 向量数据库配置
VECTOR_STORE_TYPE=chroma
CHROMA_DB_HOST=chromadb
CHROMA_DB_PORT=8000

# MySQL 配置
MYSQL_SERVER=db
MYSQL_USER=ragwebui
MYSQL_PASSWORD=ragwebui
MYSQL_DATABASE=ragwebui

# MinIO 配置
MINIO_ENDPOINT=minio:9000
MINIO_ACCESS_KEY=minioadmin
MINIO_SECRET_KEY=minioadmin
MINIO_BUCKET_NAME=documents

注意:这里使用的是 Docker Compose 的服务名而不是 localhost,这样容器之间才能正确通信。

3. 启动服务

使用 Docker Compose 启动所有服务:

docker compose up -d --build

这将启动以下服务:

  • 前端界面 (Next.js)
  • 后端 API (FastAPI)
  • MySQL 数据库
  • ChromaDB 向量数据库
  • MinIO 对象存储
  • Ollama 服务

4. 验证部署

服务启动后,可以通过以下地址访问:

  • 前端界面:http://localhost:3000
  • API 文档:http://localhost:8000/redoc
  • MinIO 控制台:http://localhost:9001

📚 使用指南

1. 创建知识库

  1. 访问 http://localhost:3000
  2. 登录后,点击"创建知识库"
  3. 填写知识库名称和描述
  4. 上传文档,选择切片方式和大小
  5. 点击"创建"
  6. 等待文档处理完成

支持以下格式:

  • PDF
  • DOCX
  • Markdown
  • Text

2. 开始对话

  1. 点击"开始对话"
  2. 输入问题
  3. 系统会自动:
    • 检索相关文档片段
    • 使用 deepseek-r1:7b 模型生成回答
    • 显示引用来源

❓ 常见问题

  1. Ollama 服务无法连接

    • 检查 Ollama 是否正常运行:ollama list
    • 检查 Docker 网络配置是否正确
  2. 文档处理失败

    • 检查文档格式是否支持
    • 查看后端日志:docker compose logs -f backend
  3. 内存不足

    • 调整 Docker 容器内存限制
    • 考虑使用更小的模型

💡 性能与安全提示:建议单个文档不超过 10MB,定期备份数据,并及时修改默认密码以确保系统安全。

🎯 结语

通过以上步骤,你已经成功搭建了一个基于 RAG 技术的本地知识库系统。该系统完全本地化部署,无需担心数据隐私问题,同时借助 Ollama 的能力,可以实现高质量的知识问答服务。

需要注意的是,这个系统主要用于学习和个人使用,如果要用于生产环境,还需要进行更多的安全性和稳定性优化。

📚 参考资源

DeepSeek 知识库,完全开源、离线部署方案。https://github.com/rag-web-ui/rag-web-ui/blob/main/docs/blog/deploy-local.md

### DeepSeek 离线部署与训练方法 #### 安卓设备上的离线部署 对于希望在移动设备上运行DeepSeek的用户来说,通过Termux这款安卓终端模拟器来实现这一目标是一个可行的选择。安装完成后,在Termux环境中进一步设置Ollama并完成DeepSeek模型的部署工作[^1]。 ```bash pkg install ollama ``` 上述命令用于在Termux环境下安装必要的组件Ollama,从而为后续的DeepSeek部署奠定基础。 #### 支持的功能应用范围 一旦成功部署DeepSeek能够执行多种任务,包括但不限于智能对话、文本生成、语义理解以及代码生成补全等功能;除此之外还具备处理文件上传的能力,可以从不同类型的文档或是图像资料里提取有用的信息内容[^2]。 #### Mac 设备上的本地化配置流程 针对苹果计算机用户而言,则可以在Mac ARM架构体系下借助Ollama工具来进行DeepSeek离线版的搭建操作。面对当前网络环境下的不确定性因素影响所造成的连接波动情况,自行构建一套独立运作的服务端显得尤为重要。这不仅有助于保障数据的安全性和隐私保护水平,同时也提高了系统的可靠程度和响应速度[^3]。 关于具体的训练过程细节并未在此提及,通常情况下预训练好的模型可以直接投入使用而无需额外再做大量调整优化动作。不过如果确实存在特定需求场景的话,可以根据官方文档指导或者是社区交流平台获取更多有关微调方面的帮助和支持资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值