文章目录
一、KMP逻辑过程的动态演示
所谓“逻辑过程”,而不是“程序”,就是以人能理解的动作来表示KMP。之后我们再从这个过程中找规律,把这些动作翻译为程序。
1.问题描述
如下图所示:我们需要在文本(蓝色)
中快速找到和模式串(黄色)
相同的子串。
2.暴力解法
对于暴力解法:我们逐个对比上下两个串的字符,假设文本
当前的指针为i
,模式串
指针为j
。
发现不匹配时,我们让模式串
后移一格。此时,i
由刚才的5又退回了1。而j
自然是0。
正是由于i
每次都要回退,所以暴力算法才效率低下。KMP算法可以实现让i
不再回退。那么它是怎么做到的呢?
3.KMP解法
假设目前遇到了一个不匹配的字符。已知前面的字符都是相同的。
我们还可以发现,左边的“ABBAB”的前端和后端有相同的子串(公共前后缀)。
接着,我们可以把模式串
移动一下:“ABBAB”是5位,前后缀有2位相同,需要移动“5-2”位才能让前缀和后缀对齐。如果前后缀有3位相同,那移动2位可以对齐,依次类推:
需
要
移
动
的
位
数
=
“
已
匹
配
子
串
位
数
”
−
“
公
共
前
后
缀
位
数
”
需要移动的位数=“已匹配子串位数”-“公共前后缀位数”
需要移动的位数=“已匹配子串位数”−“公共前后缀位数”
那原来的i=5
左边的子串是不是就匹配上了呢,我们可以直接从i=5
开始,继续和模式串向后比较,不需要再回退i
啦!
只看模式串
,我们上面的操作是移动了3格,如果移动1格或2格就能让匹配的子串更长的话,那公共前后缀应该是那个新匹配的“更长子串”才对,然而并非如此。所以,我们可以证明,将前缀移动到后缀的位置,是可以移动的最大距离,不会让我们漏掉可能匹配的其他情况。
同时,我们也要考虑到,如果有多个公共前后缀,我们要选择最长的那个。
文本
和模式串
左边匹配的内容完全相同,所以我们只研究模式串
就够了。
我们存储模式串
时,从下标1开始。拿来和文本
进行比较的时候,每个位置都可能发生不匹配的情况。
假如第一个位置就不匹配:我们需要让1号位和文本(主串)
的下一位比较。
如果2号位不匹配,我们需要找公共前后缀,因为“A”只有1位,所以无公共前后缀(小于字符串总位数),应该移动的位数为(1-0)=0。
3号位上同样没有公共前后缀。
当4号位不匹配时,找到最长公共前后缀,位数为1,所以移动位数为2,此时公共前缀的下一位与i
进行比较,即2号位。从这里我们就可以看出规律了:i
与公共前后缀的位数+1的字符进行比较即可。
所以,我们可以把模式串
上的每一位它的左边子串的“最大公共前后缀长度”存储起来,就能知道i
下一次应该与模式串
中的哪个字符比较了。存储起来的这个数组,就是大名鼎鼎的“next数组”。
对于1号位的特殊情况,我们可以用“0”表示:
二、例题与模板
1.题目
给定一个模式串S,以及一个模板串P,所有字符串中只包含大小写英文字母以及阿拉伯数字。模板串P在模式串S中多次作为子串出现。求出模板串P在模式串S中所有出现的位置的起始下标。
输入格式
第一行输入整数N,表示字符串P的长度。第二行输入字符串P。第三行输入整数M,表示字符串S的长度。第四行输入字符串S。
输出格式
共一行,输出所有出现位置的起始下标(下标从0开始计数),整数之间用空格隔开。
数据范围
1
≤
N
≤
105
1≤N≤105
1≤N≤105
1
≤
M
≤
106
1≤M≤106
1≤M≤106
输入样例:
3
aba
5
ababa
输出样例:
0 2
2.有next数组后的匹配代码
首先获取一下数据:
#include <iostream>
using namespace std;
const int N = 100010, M = 10010; //N为模式串长度,M匹配串长度
int n, m;
int ne[M]; //next[]数组,避免和头文件next冲突
char s[N], p[M]; //s为模式串, p为匹配串
int main()
{
cin >> n >> s+1 >> m >> p+1; //下标都从1开始
……
return 0;
}
假装获取了next数组:
【注意】next数组里存储的实际上是“最大公共前后缀的位数”,而下一个要比较的应该是这个数字加一。next数组从0下标开始存,前两位的值都是0。
匹配的代码:
假设j=1
:
for(int i = 1, j = 1; i <= n; i++)
{
if(j==1){
if(s[i]==p[j]){//1号位匹配了
j++;
if(j==m+1)j=ne[j-1]+1;
}
else j=1;//1号位不匹配
}
else{
//j>=2
while(j!=1&&s[i]!=p[j]){
j=ne[j-1]+1;//2号及以上位不匹配
//移动之后,可能需要判断1号位了
}
if(s[i]==p[j]){
j++;
if(j==m+1)j=ne[j-1]+1;
}
}
}
上述代码还可以简化:把j=ne[j-1]+1
中的j
变为j+1
,可以得到j+1=ne[j+1-1]+1
即j=ne[j]
。也就是说,我们可以把初始值j=1
变为j=0
。
for(int i = 1, j = 0; i <= n; i++)
{
if(j==0){
if(s[i]==p[j+1]){//1号位匹配了
j++;
}
if(j==m)j=ne[j];
}
else{
//j>=1
while(j!=0&&s[i]!=p[j+1]){
j=ne[j];//2号及以上位不匹配
//移动之后,可能需要判断1号位了
}
if(s[i]==p[j+1]){
j++;
}
if(j==m)j=ne[j];
}
}
把重复代码去掉,就是:
for(int i = 1, j = 0; i <= n; i++)
{
//j>=1
while(j && s[i] != p[j+1])j=ne[j];
if(s[i]==p[j+1])j++;//j指向当前匹配的字符的位置
if(j==m)j=ne[j-1]+1;
}
3.求next数组的代码
next数组的求法是通过模板串自己与自己进行匹配操作得出来的。代码和匹配操作的代码几乎一样,关键在于每次移动 i 前,将 i 前面已经匹配的长度记录到next数组中。
ABABACBA
ABABACBA
我们直接从next数组的第三个元素开始存:
for(int i = 2, j = 0; i <= m; i++)
{
while(j && p[i] != p[j+1]) j = ne[j];
if(p[i] == p[j+1]) j++;//j指向当前匹配的字符的位置
ne[i] = j;//即在第三个元素处,当前匹配的字符个数
}
-
i==2,j=0; 即ne[2]=0。i=2时,获取的正好就是第三位前的字符串的最大公共前后缀。判断第一位和第二位是否相等。
-
i==3,j=1; 即ne[3]=1。i=3时,获取的正好就是第四位前的字符串的最大公共前后缀。判断第一位和第三位是否相等。
-
i==4,j=2; 即ne[4]=2。i=4时,获取的正好就是第五位前的字符串的最大公共前后缀。判断前两位和后两位是否相等(前一位和第一位已经相等了)。
4.完整代码
#include <iostream>
using namespace std;
const int N = 100010, M = 10010; //N为模式串长度,M匹配串长度
int n, m;
int ne[M]; //next[]数组,避免和头文件next冲突
char s[N], p[M]; //s为模式串, p为匹配串
int main()
{
cin >> n >> s+1 >> m >> p+1; //下标从1开始
//求next[]数组
for(int i = 2, j = 0; i <= m; i++)
{
while(j && p[i] != p[j+1]) j = ne[j];
if(p[i] == p[j+1]) j++;
ne[i] = j;
}
//匹配操作
for(int i = 1, j = 0; i <= n; i++)
{
while(j && s[i] != p[j+1]) j = ne[j];
if(s[i] == p[j+1]) j++;
if(j == m) //满足匹配条件,打印开头下标, 从0开始
{
//匹配完成后的具体操作
//如:输出以0开始的匹配子串的首字母下标
//printf("%d ", i - m); (若从1开始,加1)
j = ne[j]; //再次继续匹配
}
}
return 0;
}
三、来应用吧!
力扣28.实现strStr()
题目要求:
代码:
(背会了模板,做题快得一p。一看题目就知道用什么算法解决,代码也非常熟练哈哈哈哈,是理想状态了~)
class Solution {
public:
int strStr(string haystack, string needle) {
if(needle.size()==0)return 0;
int n=haystack.size();
int m=needle.size();
vector<char> s(n+10),p(m+10);
for(int i=0;i<n;i++){
s[i+1]=haystack[i];
}
for(int i=0;i<m;i++){
p[i+1]=needle[i];
}
vector<int> ne(m+10,0);
int ans=-1;
//求next数组
for(int i=2,j=0;i<=m;i++){
while(j&&p[i]!=p[j+1]) j=ne[j];
if(p[i]==p[j+1])j++;
ne[i]=j;
}
//匹配
for(int i=1,j=0;i<=n;i++){
while(j&&s[i]!=p[j+1]) j=ne[j];
if(s[i]==p[j+1])j++;
if(j==m){
ans=i-needle.size();
break;
}
}
return ans;
}
};