解读运营指标:DAU/MAU

作为一个测试人员,有必要了解一下运营常用名词,看到一篇不错的文章,特意转载,如若侵权,请留言要求删除。

很多运营都了解DAU(日活跃用户数)和MAU(月活跃用户数)的重要性,但在某些情况下这两个数值本身并不能反映出太多问题,这个时候就要引用到【DAU/MAU】的概念,即【日活/月活】。

1)DAU/MAU↑,DAU↑

原因:产品的运营活动或较大变动唤醒了部分沉睡用户,新增用户较少

运营方向:加大产品推广,拉新

2)DAU/MAU↑,MAU↓

原因:非忠实用户的流失变多,产品没有满足这部分用户的需求

运营方向:确保核心功能的同时进行多元化的功能延伸,满足非忠诚用户的需求

3)DAU/MAU↓,DAU↓

原因:产品的核心功能出现问题,可能存在竞品等外界干扰

运营方向:需要进一步打磨产品,提升用户体验

4)DAU/MAU↓,MAU↑

原因:产品的运营活动或推广宣传带来了一批新的用户,但其活跃度缺乏持续性,用户流失较大

运营方向:需要增加用户粘性,给予用户持续性的多变的激励,以减少流失 

作者:西门菜花
链接:https://www.jianshu.com/p/a3d1d04faf99
来源:简书

MAU (月活跃用户) 和 DAU (日活跃用户) 的预测对于产品运营和市场分析至关重要。它帮助团队理解产品的健康状况,并对未来的发展趋势作出预判。 ### 预测 MAU / DAU 的方法 1. **时间序列分析** - 这是一种基于历史数据的趋势外推法,适用于当您的DAU/MAU呈现明显的时间规律性变化时使用。 - 常见工具和技术包括ARIMA模型、指数平滑等统计学手段。 2. **机器学习算法** - 对于更复杂的模式识别任务,则可以考虑应用监督式或非监督式的机器学习技术来进行建模训练。例如回归树、随机森林和支持向量机都是不错的选择;而深度神经网络在处理大规模复杂特征空间的问题上也有着优异的表现。 3. **分解因素影响** - 分析并量化各个可能的影响因子(如季节效应、节假日特殊事件等因素),通过加权组合的方式构造出最终的增长曲线方程。这一过程通常需要结合业务逻辑深入探讨每个变量之间的内在联系及作用机制。 4. **外部环境监测** - 跟踪行业动态以及宏观经济指标的变化情况对长期走势做出合理估计也十分必要。有时候突发性的政策调整或是竞争对手的新动作都会给现有的增长态势带来较大冲击,在构建预测体系之初就应该把这些不确定要素纳入考量范围之内。 5. **A/B测试** - 如果有条件的话还可以利用A/B实验获取关于特定功能改进效果的第一手反馈信息用于校准和完善预测框架的设计思路。 6. **专家判断与经验法则** - 经验丰富的从业者往往能够凭借直觉快速捕捉到潜在的风险点所在,并据此给出具有一定参考价值的意见建议作为辅助决策依据之一。 为了获得最准确的结果,实际操作过程中通常是将以上几种策略相互配合起来综合运用: - 先采用简单的线性拟合或其他基本假设去初步刻画整体变动轮廓; - 再引入更多的细分维度做交叉验证确保结论可靠性; - 最后辅之以定性层面的专业见解进一步优化参数设定直至满意为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值