古代赌局:
俗话说:十赌九输。因为大多数赌局的背后都藏有阴谋。
不过也不尽然,有些赌局背后藏有的是:“阳谋”。
有一种赌局是这样的:桌子上放六个匣子,编号是1至6。
多位参与者(以下称玩家)可以把任意数量的钱押在某个编号的匣子上。
所有玩家都下注后,庄家同时掷出3个骰子(骰子上的数字都是1至6)。
输赢规则如下:
1.若只有1个骰子上的数字与玩家所押注的匣子号相同,则玩家拿回自己的押注,庄家按他押注的数目赔付(即1比1的赔率)。
2.若2个骰子上的数字与玩家所押注的匣子号相同,则玩家拿回自己的押注,庄家按他押注的数目的2倍赔付(即1比2的赔率)。
3.若3个骰子上的数字都与玩家押注的匣子号相同,则玩家拿回自己的押注,庄家按他押注的数目的10倍赔付(即1比10的赔率)。
乍一看起来,好像规则对玩家有利,庄家吃亏。但经过大量实战,会发现局面很难说,于是怀疑是否庄家做了手脚,庄家则十分爽快地说:可以由玩家提供骰子,甚至也可以由玩家来投掷骰子。
你的任务是:通过编程模拟该过程。模拟50万次,假定只有1个玩家,他每次的押注都是1元钱,其押注的匣子号是随机的。再假定庄家有足够的资金用于赔付。最后计算出庄家的盈率(庄家盈利金额/押注总金额)。
代码如下:
package sf_6;
public class Main {
/**
* @param args
*/
public static int f(){
/*
* Math.random() 产生的是[0,1)的数。
*/
/*
* 庄家掷出的三个骰子的结果:
* Math.random()*6 产生的是0~5的数,所以应当进行+1操作。
*/
int a=(int)(Math.random()*6)+1;//产生0~6的数。
int b=(int)(Math.random()*6)+1;//产生0~6的数。
int c=(int)(Math.random()*6)+1;//产生0~6的数。
//模拟用户押了哪一个箱子
int w=(int)(Math.random()*6)+1;//产生0~6的数。
int n=0;
if(a==w) n++;
if(b==w) n++;
if(c==w) n++;
if(n==3) return -10;
if(n==2) return -2;
if(n==1) return -1;
return 1;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
int N=500*1000;
double sum=0;for(int i=0;i<N;i++){
sum+=f();
}
/*
* N(500000元)为押注总金额;
* sum为庄家的赢利金额。
*/
System.out.print(sum/N);
}
}