概率论发展史上的几个经典问题

1.巴拿赫的火柴盒问题

巴拿赫 Stefan Banach 是 20 世纪初最重要的数学家之一——如果你对流行数学感兴趣,你就会听说过 Banach-Tarski 悖论;如果你做过任何严肃的线性代数,你就会知道巴拿赫空间;如果你读过《破解数学》,你就会从苏格兰咖啡馆的章节中认出他的名字。 很明显,从以他命名的事物列表中选择了一个不太严肃的例子:巴拿赫的火柴盒问题。这个问题应该并不直接归咎于巴拿赫,这个概率问题主要是想取笑巴拿赫抽了多少烟,更确切地说是关于火柴盒与火柴的问题。

                                

问题描述

爱抽烟的数学家巴拿赫教授在左右口袋各放入了一盒火柴,他每次吸烟时,都随机的从左右口袋中掏出一盒火柴点烟(从左右口袋掏火柴盒的概率均为1/2),而且每次掏火柴的习惯是相互独立的。假定开始时左右口袋中的火柴盒各放入火柴根数为n。在每一天,他从任一口袋中随机取出一根火柴。在某个时候,他伸手去拿一根火柴,发现他挑选的盒子是空的,那么另一个口袋中的火柴盒中的火柴根数的分布列是什么?如果从左口袋掏火柴盒的概率是p,从右口袋掏火柴盒的概率为 1-p, 相应的结果又会是什么?

X是一个火柴盒为空,另一个火柴盒中火柴的根数.对于k=0,1,2,...,n,定义L_k(或R_k)分别为这样的随机事件:当第一次发现一个火柴盒为空火柴盒的时候,这个火柴盒是左或者右口袋里的火柴盒,并且右(或者左)火柴盒里剩下 k 根火柴。X 的分布列为:

                                                p_X(k)=P(L_k)+P(R_k)

进一步地,我们定义选择左口袋为一次成功,选择右口袋为一次失败事件。则L_k是这样的事件:前2n-k次事件中成功了n 次,在2n-k+1次试验的时候也是成功,这样对于 \small \\ \quad k=0,1,...,n

                \small P(L_k)=\frac{1}{2}{n-k+n \choose n}\cdot \left(\frac{1}{2}\right)^{2n-k}={2n-k \choose n}\cdot \left(\frac{1}{2}\right)^{2n+1-k}

利用对称性 P(L_k)=P(R_k),可知对于 \small \\ \quad k=0,1,...,n,得到

                        \small p_X(k)=P(L_k)+P(R_k)={2n-k \choose n}\cdot \left(\frac{1}{2}\right)^{2n-k}

对问题推广后,即从左口袋取火柴的概率为p,右口袋取火柴的概率为1-p,利用相似性推理得到:

                        P(L_k)=p{n-k+n \choose n}\cdot p^{n}(1-p)^{n-k}, \quad k=0,1,...,n

        ​​​​​​​        ​​​​​​​        P(R_k)=(1-p){n-k+n \choose n}\cdot p^{n-k}(1-p)^{n}, \quad k=0,1,...,n

由此得到

           p_X(k)=P(L_k)+P(R_k)={2n-k \choose n}\cdot (p^{n+1}(1-p)^{n-k}+p^{n-k}(1-p)^{n+1})

2.赌徒破产问题

3.赌本分割问题

泰里思和温迪在玩18个洞的高尔夫球,其奖金为10元钱。他们各自赢得一 个洞的概率分别为p(泰里思)和(1-p)(温迪),并且各个洞的输赢是相互独立的。打完10个洞的时候,他们的比分为4:6,温迪占上风。此时泰里思接到一个紧急电话,必须回单位工作。他们决定按照他们打完比赛时候赢得比赛的概率分割奖金。假定p_T(p_W)代表在目前10个洞的比分4:6的条件下,完成18个洞的比赛后泰里思(温迪)领先的概率,则泰里思应得\frac{10p_T}{p_T+p_w}​​​​​​​元,而温迪应得\frac{10p_W}{p_T+p_W}元。泰里思应该分得多少钱?

这是著名的点数问题一个例子,也就是赌本分割问题,对此类问题,帕斯卡提出的想法是:赌本分割问题应当按中断的条件下双方各自赢得赌博的条件概率进行分配。我们来推理下。
  由题意可得:

                        p_T=P(泰里思在剩余的八个洞中至少打进6个洞) 
                        p_W=P(温迪在剩余的八个洞中至少打进4个洞)

运用一下二项分布的公式可得

        ​​​​​​​        ​​​​​​​        ​​​​​​​        p_T=\Sigma_{k=6}^{8}\begin{pmatrix}8 \\ k\end{pmatrix}p^k(1-p)^{8-k}

        ​​​​​​​        ​​​​​​​        ​​​​​​​        p_W=\Sigma_{k=4}^{8}\begin{pmatrix}8 \\ k\end{pmatrix}p^k(1-p)^{8-k}

 因此可以计算出泰里思应得的钱数。

4.两个信封之谜

你收到两个信封,每个信封内有若干钞票,钞票的数目都是整数(以元为单位),但两个信封内的钱数是不相同的。两个信封内的钱数可以认为是未知的常数。当你随机地打开一个信封以后,这个信封中的钱就是你的了,为了多拿钱。你还可以改变主意,决定拿另一个信封中的钱。一个朋友声称有一个策略,可以使拿到钱数较大的信封的概率超过1/2。其方法如下:你连续地抛掷一枚硬币,直到出现正面出现为止,令x为你抛掷硬币的次数再加上1/2。如果你头一次打开的信封里的钱数少于x,你就换信封,否则不换,你的朋友的方法可行吗?

初刚看到这个问题时,感觉这两件事完全没有关联啊,然后看了推理之后,才觉得真的是太机智了。我们记\bar{m}\underline m分别是信封中较大的钱数和较小的钱数,那么关于x总共会有三种事件发生:

        ​​​​​​​        A = \{X < \underline{m}\},\qquad B = \{\underline{m} < X < \overline{m}\},\qquad C = \{\overline{m} < X\}

\overline{A},\overline{B},\overline{C}是满足对应的事件A,B,C发生,并且你第一次挑选的信封中包含\overline{m}的事件,同理\underline A,\underline B,\underline C,是包含 \underline m 的事件。
考虑如下事件:

                W = {挑选结束时你的信封中包含\overline{m}}

由条件概率得:

                ​​​​​​​        \begin{align} P(W|A) &amp; = \frac{1}{2}(P(W|\overline{A}) + P(W|\underline{A}))=\frac{1}{2}(1+0)=\frac{1}{2} \nonumber \\ P(W|B) &amp; = \frac{1}{2}(P(W|\overline{B}) + P(W|\underline{B}))=\frac{1}{2}(1+1)=1 \nonumber \\ P(W|C) &amp; = \frac{1}{2}(P(W|\overline{C}) + P(W|\underline{C}))=\frac{1}{2}(0+1)=\frac{1}{2} \nonumber \end{align}

由全概率公式计算P(W),得:

        ​​​​​​​                \begin{align} P(W) &amp; = P(A)P(W|A) + P(B)P(W|B) + P(C)P(W|C) \nonumber \\ &amp; = \frac{1}{2}(P(A) + P(B) + P(C)) + \frac{1}{2}P(B) \nonumber \\ &amp; > \frac{1}{2} \nonumber \end{align}

所以这个策略是对的。

5.拉普拉斯继承性准则

设有m+1个盒子,第\small k 个盒子里有 \small k个红球,\small m-k个白球,\small 0\leq k\leq m

随便选取一个盒子,独立有放回抽一个球,抽  \small n次。假设\small n 次都是红球,那再抽一个球为红球的概率是多少?\small m很大时这个概率会如何?

解:记E为第\small n+1 次为红球的事件,\small R_n\small n次抽取都是红球的时间。由于连续抽取红球,所以盒子里面应该会有很多红球,于是\small P(E|R{n}) \approx 1.

事实上,拉普拉斯利用此例去计算给定5000年中每天日出的条件下明天日出的概率。

根据贝叶斯公式:

                                                \small P(E|R_n)= \frac{P(E \cap R_n)}{P(R_n)}

再由全概率公式得:

        ​​​​​​​                \small P(R_n)=\Sigma_{k=0}^{m}P(choose K^{th})(\frac{k}{m})^n=\frac{1}{m+1}\Sigma_{k=0}^{m}(\frac{k}{m})^n

        ​​​​​​​                \small P(E \cap R_n)=P(R_{n+1})=\frac{1}{m+1}\Sigma_{k=0}^{m}(\frac{k}{m})^{n+1}

如果\small m很大,可将求和项看成积分的近似值

        \small P(R_n)=\frac{1}{m+1}\Sigma_{k=0}^{m}(\frac{k}{m})^n \approx \frac{1}{(m+1)m^n} \int_0^m x^n dx = \frac{1}{(m+1)m^n}\frac{m^{n+1}}{n+1}

  也就是:

                                                      \small P(R_n)=\frac{m}{(m+1)(n+1)} \approx \frac{1}{n+1}​​​​​​​

同理
                                        P(E \cap R_n)=P(R_{n+1}) \approx \frac{1}{n+2}

从而,

                                                P(E|R_n) \approx \frac{n+1}{n+2}

mn很大时,抽取红球几乎是必然的.

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 当然,我很乐意帮助你找到一些常见的概率论公式。以下是一些常见的概率公式: 1. 事件发生的概率公式:P(A) = n(A) / n(S),其中 n(A) 是事件 A 发生的可能性,n(S) 是样本空间中所有可能结果的数量。 2. 边际概率公式:P(A) = ΣP(A,B) 和 P(B) = ΣP(A,B),其中 A 和 B 是两个事件,Σ 是对所有可能的 B 进行求和。 3. 条件概率公式:P(A|B) = P(A,B) / P(B),其中 A 和 B 是两个事件,P(A,B) 是 A 和 B 同时发生的可能性,P(B) 是事件 B 发生的可能性。 4. 联合概率公式:P(A,B) = P(A|B) × P(B),其中 A 和 B 是两个事件,P(A|B) 是在事件 B 发生的情况下,事件 A 发生的可能性。 5. 独立事件的概率公式:如果 A 和 B 是独立事件,那么 P(A,B) = P(A) × P(B)。 这些是一些基本的概率公式,希望能对你有所帮助。如果你有任何其他问题或需要更多的帮助,请随时告诉我。 ### 回答2: 当然!下面是几个常见的概率论公式: 1. 概率的加法规则:对于两个事件A和B,概率的加法规则表示为P(A∪B) = P(A) + P(B) - P(A∩B)。即两个事件的并集的概率等于两个事件各自的概率之和减去它们的交集的概率。 2. 条件概率的定义:对于两个事件A和B,条件概率的定义表示为P(A|B) = P(A∩B) / P(B)。整体事件B发生的条件下,事件A发生的概率为A与B的交集的概率除以B的概率。 3. 贝叶斯定理:根据条件概率的定义和乘法规则,贝叶斯定理表示为P(B|A) = P(A|B) * P(B) / P(A)。确定了事件A发生的条件下,事件B发生的概率等于事件B发生的条件下事件A发生的概率与事件B发生的概率的乘积再除以事件A发生的概率。 4. 排列公式:对于n个元素中选取k个元素排列的情况,排列公式表示为P(n, k) = n! / (n-k)!,其中n!表示n的阶乘。 5. 组合公式:对于n个元素中选取k个元素组合的情况,组合公式表示为C(n, k) = n! / (k!(n-k)!)。 这只是几个常见的概率论公式,希望能够帮到你!如果你还有其他问题,请随时提问。 ### 回答3: 当然可以帮你找几个概率论公式。概率论是一个研究随机事件发生的可能性和规律的数学学科,它有很多重要的公式。 首先,概率的基本公式是事件A发生的概率等于A包含的基本事件发生的概率之和。即P(A) = P(A1) + P(A2) + ... + P(An),其中A1,A2等表示A的基本事件。 其次,对于两个互斥事件A和B,它们同时发生的概率为0,可以用概率的加法法则表示为P(A∪B) = P(A) + P(B)。 另外,如果事件A和B独立,那么它们同时发生的概率可以用概率的乘法法则表示为P(A∩B) = P(A) × P(B)。 当涉及到$n$个独立重复试验时,成功事件发生$k$次的概率可以用二项分布公式表示为$P(X=k)=C_n^k \cdot p^k \cdot (1-p)^{n-k}$,其中$C_n^k$表示从$n$个试验中取出$k$个试验成功的组合数,$p$表示每次试验成功的概率。 此外,连续随机变量的概率密度函数$f(x)$可以用累积分布函数表示为$F(x) = \int_{-\infty}^x f(t) dt$,其中$f(x)$表示随机变量$X$在$x$处的概率密度函数,$F(x)$表示随机变量$X$小于等于$x$的累积概率。 这只是概率论中的一些基本公式,还有很多其他公式,如贝叶斯定理、中心极限定理、大数定律等。希望这些公式能解答你的问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scott198512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值