模糊理论基础

模糊理论基础


集合:

空集: ∅ \empty
子集: A ⊆ B A\subseteq B AB
相等: A = B A = B A=B
真子集: A ⊂ B A \subset B AB
幂集: P ( X ) P(X) P(X) ,X的所有子集的集合


笛卡尔集:

A={a,b} , B={1,2}
A × B A \times B A×B ={<a,1>,<a,2>,<b,1>,<b,2>}


关系:

空关系: ∅ \empty
全关系: X × Y X \times Y X×Y
恒等关系: I = { ( x , x ) ∣ x ∈ X } I =\{(x,x)| x\in X\} I={(x,x)xX}

等价关系:自反,对称,传递
等价类 [x] : R是X上的等价关系, ∀ x ∈ X , [ x ] = { y ∣ y ∈ X , x R y } \forall x\in X, [x] = \{y | y \in X,xRy\} xX,[x]={yyX,xRy}
商集:R的等价类的集合称为X关于R的商集, X / R = { [ x ] ∣ x ∈ X } X/R = \{[x] | x \in X\} X/R={[x]xX}
划分:商集X/R构成X的一个划分

关系的三种表达方式:

  1. 集合
  2. 矩阵
  3. 关系图

映射(函数)

映射(函数):, f : A → B f : A\rightarrow B f:AB
映射: ∀ x ∈ A \forall x\in A xA,都有唯一的 y ∈ B y\in B yB,使得 y = f ( x ) y=f(x) y=f(x)
单射:全为一对一的映射
满射:B中每个元素都被映射到
双射:满射 + 单射


代数系统

f 1 , f 2 , . . . , f m f1,f2,...,f_m f1,f2,...,fm是S上的m个运算, ( S , f 1 , f 2 , . . . , f m ) (S,f1,f2,...,f_m) (S,f1,f2,...,fm)称为一个代数系统。

+,-, × \times × 是R上的运算,则 ( R , + , − , × ) (R,+,-,\times) (R,+,,×)是一个代数系统


同态和同构:
同态and同构


偏序到格

偏序:自反,反对称,传递
界:上界、下界、上确界 s u p S sup S supS 、下确界 i n f S inf S infS

( P , ≤ ) (P,\leq) (P,)是一个偏序集, S ⊆ P , a ∈ P S \subseteq P, a \in P SP,aP

  1. ∀ x ∈ S , x ≤ a \forall x \in S,x \leq a xS,xa,则称a是S的一个上界
  2. ∀ x ∈ S , x ≥ a \forall x \in S,x \geq a xS,xa,则称a是S的一个下界
  3. a是S的一个最小的上界,则称a是S的一个上确界
  4. a是S的一个最大的下界,则称a是S的一个下确界

性质

格的定义

( L , ≤ ) 是 偏 序 集 , 若 ∀ α , β ∈ L , s u p { α , β } , i n f { α , β } (L,\leq)是偏序集,若 \forall \alpha,\beta \in L ,sup\{\alpha,\beta\}, inf\{\alpha,\beta\} (L,)α,βL,sup{α,β},inf{α,β}均存在,则 ( L , ≤ ) (L,\leq) (L,)是一个

⋁ \bigvee : 取大sup; ⋀ \bigwedge : 取小inf

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

不同的格:

  • 分配格
    在这里插入图片描述
  • 有界格
    在这里插入图片描述
  • 完全格
    在这里插入图片描述
  • 完全分配格
    在这里插入图片描述
  • 软代数
    在这里插入图片描述
  • 布尔代数
    在这里插入图片描述
  • 优软代数
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值