了解并实现一个Transformer Block


1. 前言

什么是 Transformer?如果希望深入理解可以参考:
《NLP深入学习:大模型背后的Transformer模型究竟是什么?(一)》
《NLP深入学习:大模型背后的Transformer模型究竟是什么?(二)》
本文主要介绍常常听到的 Transformer Block 的概念,以及如何实现一个 Transformer Block。

2. Transformer Block

回顾一下 Transformer 的完整模型:
在这里插入图片描述
我们常说的 Transformer Block 对应图中解码器的上部分。为了具体展示流程,我们假设有一句话:“Every effort moves you” 作为输入,经过蓝色框中的 Transformer Block 之后输出,如下图:

在这里插入图片描述
图中蓝色的部分就是所谓的 Transformer Block。

3. 代码实现

BERT 源码已经实现了 Transformer 的细节,完整源码参考 Pytorch Bert,这里把 Transformer Block 实现的框架贴出来

import torch.nn as nn

from .attention import MultiHeadedAttention
from .utils import SublayerConnection, PositionwiseFeedForward


class TransformerBlock(nn.Module):
    """
    Bidirectional Encoder = Transformer (self-attention)
    Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
    """

    def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
        """
        :param hidden: hidden size of transformer
        :param attn_heads: head sizes of multi-head attention
        :param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
        :param dropout: dropout rate
        """

        super().__init__()
        self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden)
        self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
        self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
        self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, mask):
        x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, _x, _x, mask=mask))
        x = self.output_sublayer(x, self.feed_forward)
        return self.dropout(x)

4. 参考

《NLP深入学习:大模型背后的Transformer模型究竟是什么?(一)》
《NLP深入学习:大模型背后的Transformer模型究竟是什么?(二)》

欢迎关注本人,我是喜欢搞事的程序猿; 一起进步,一起学习;

欢迎关注知乎/CSDN:SmallerFL;

也欢迎关注我的wx公众号(精选高质量文章):一个比特定乾坤

TransformerBlock 是指在BERT中的一个组件,它是BERT模型中的Encoder的基本单元。TransformerBlock实际上是Transformer模型的一个组成部分,它用于将输入序列进行编码。Transformer模型是一个序列到序列(Seq2seq)模型,可以用于各种自然语言处理任务。TransformerBlock的主要特点是具有线性复杂度的特征向量维度和序列计算的行化能力。它通过注意力机制来捕捉输入序列中不同位置之间的关系,通过多层神经网络进行非线性变换。在BERT中,TransformerBlock被重复堆叠多次以构建Encoder层,以便对输入序列进行多层次的表示学习。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Transformer](https://blog.csdn.net/qq_37774399/article/details/119602984)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [transformer:应用于时间序列的 Transformer 模型(最初来自 Attention is All You Need)的实现](https://download.csdn.net/download/weixin_42131705/19209947)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值