一文读懂「Transformer」算法模型

前面讲到过chatgpt的知识,提到了chatgpt的实现原理包含了transformer内容,所有非常有必要来补充一下这部分的内容。
资料:一文读懂「Attention」注意力机制

在这里插入图片描述

一、什么是Transformer?

Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,现在比较火热的 Bert 也是基于 Transformer。Transformer 模型使用了 Self-Attention 机制,不采用 RNN 的顺序结构,使得模型可以并行化训练,而且能够拥有全局信息。

🔍 Why Transformer

  • RNN:能够捕获长距离依赖信息,但是无法并行计算
  • CNN:能够并行,无法捕获长
Transformer模型是一种基于自注意力机制(Self-Attention)的深度学习架构,最初由Google的团队在2017年提出的论文《Attention Is All You Need》中详细介绍[^4]。它的核心思想是让模型能够并行地处理序列中的每个位置,而不是像RNN那样顺序依赖。 **原理概述**[^4]: 1. **自注意力机制**: Transformer通过计算查询(query)、键(key)和值(value)之间的相似度来建立元素间的直接联系。这个过程不依赖于先前的状态,而是考虑整个输入序列。 2. **多头注意力(Multi-head Attention)**: 分成多个子层执行注意力操作,每个子层有自己独立的权重参数,可以捕获不同抽象层次的关系。 3. **位置编码(Positional Encoding)**: 对于缺少循环结构的Transformer来说,引入了位置信息到输入,以捕捉词语之间的相对顺序。 4. **残差连接和层归一化**: 残差网络允许信息在网络的不同层之间自由流动,而层归一化则有助于加速训练。 5. **自回归性与掩码(Masking)**: 对于生成任务,为了保持预测的顺序性,模型会限制前向传播时对未来的访问。 要深入理解Transformer的工作原理,你可以从以下几个方面入手: - **Transformer架构示意图**: 查看其标准的encoder-decoder结构[^4]。 - **注意力机制的数学公式**: 学习softmax加权求和的实现细节[^5]。 - **实际代码实现**: 参考开源库如Hugging Face Transformers[^6]中的代码,通过实践构建一个简单的Transformer模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱晓霞AI

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值