AI在 SLAM方向的应用综述

一、引言

SLAM(Simultaneous Localization and Mapping,即同时定位与建图)是机器人与计算机视觉领域的核心问题。传统 SLAM 系统依赖滤波器、优化方法和几何推理,但在动态环境、感知模糊、纹理缺失等场景中面临挑战。

近年来,人工智能(AI)技术——尤其是深度学习(Deep Learning),在特征提取、语义理解、位姿估计等方面展现出强大能力,为 SLAM 带来革命性变化。AI 与 SLAM 的融合已成为热点方向,催生出多个子领域,如学习型SLAM(Learning-based SLAM)语义SLAM(Semantic SLAM)端到端SLAM(End-to-End SLAM) 等。


二、AI 在 SLAM 中的关键应用方向

1. 特征提取与匹配

传统特征如 ORB、SIFT、SURF 对纹理变化敏感。AI 提供更稳健的替代方案:

  • SuperPoint:用 CNN 学习局部关键点及描述子。
  • LF-Net, R2D2:端到端训练鲁棒特征提取器。
  • D2-Net, DISK:联合检测和描述,适用于高动态环境。

优势:更强的鲁棒性与区分性,适应极端光照、尺度变化。


2. 语义理解与地图增强

AI 模型可将视觉数据转换为语义信息,构建更高层次地图:

  • 语义分割(Semantic Segmentation):如使用 DeepLab、Mask R-CNN 等模型将物体分类。
  • 语义地图(Semantic Map):将场景中“椅子”、“墙”、“人”等物体标签融合进地图,提升定位与规划能力。

应用

  • 过滤动态目标(如行人)
  • 构建可解释地图
  • 支持任务规划

3. 深度估计与场景理解

  • 单目深度估计:通过 CNN(如 Monodepth, DPT)从单张图像预测稠密深度。
  • 学习立体匹配:如 PSMNet、RAFT-Stereo。
  • 神经隐式表示(NeRF, Gaussian Splatting):基于神经场构建 3D 表达。

优势

  • 弥补稀疏激光或单目信息的不足
  • 实现稠密重建
  • 可集成于 VO/VIO 系统

4. 位姿估计与运动建模

  • 视觉里程计替代(Learning-based VO/VIO):如 DeepVO, VINet 使用序列图像直接回归位姿。
  • IMU 融合增强:AI 预测加速度漂移或动态补偿。
  • 端到端 SLAM(如 DROID-SLAM):使用 Transformer/CNN/LSTM 模块实现直接回归或优化模块。

挑战:需要大量数据训练、泛化能力较弱。


5. 回环检测与重定位

  • 基于图像检索的 AI 回环检测
    • NetVLAD、DELG:学习图像全局表示用于匹配。
    • SuperGlue:图神经网络用于图像匹配。
  • 鲁棒回环构造:适应不同视角与遮挡。

三、典型系统与代表工作

系统说明
ORB-SLAM3 + AI用 SuperPoint/NetVLAD 替换传统前端模块,提升鲁棒性
DynaSLAM / Detect-SLAM利用语义分割剔除动态物体,改进建图稳定性
DeepFactors / CodeSLAM使用学习型深度因子图建图
DROID-SLAM (CVPR’2021)基于深度神经网络的端到端稠密 SLAM
GS-SLAM (2024)结合高效神经渲染(3D Gaussian Splatting)构建地图

四、AI + SLAM 的优势与挑战

优势

  • 更强的鲁棒性与适应性
  • 可融合高语义信息,实现高层次理解
  • 支持弱监督、无监督训练,降低标注成本
  • 推动传统系统向端到端迁移

挑战

  • 泛化性差:训练数据和实际环境差异大
  • 高计算成本,实时性难以保障
  • 与传统几何约束整合仍在探索
  • 可解释性与稳定性问题

五、未来发展趋势

  • 几何 + AI 融合(Geo-AI Hybrid SLAM):结合可解释性与学习能力
  • 轻量化模型部署(Tiny SLAM Networks):适应嵌入式设备
  • 跨模态融合:视觉 + IMU + LiDAR + 语音等多源数据协同
  • 图神经网络(GNN)在 SLAM 图优化中的应用
  • Neural SLAM / Neural Map:用神经隐式表达替代传统地图结构

六、总结

AI 技术正深刻改变 SLAM 系统的架构与能力。从传统几何方法到学习驱动模型,AI 推动 SLAM 向更智能、鲁棒、语义化的方向发展。未来的 SLAM 系统将更多地融合 AI 与物理世界知识,走向真实世界中的可靠部署。


引用文献

  1. D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-Supervised Interest Point Detection and Description,” CVPR Workshops, 2018.

  2. M. Dusmanu et al., “D2-Net: A Trainable CNN for Joint Detection and Description of Local Features,” in Proc. CVPR, 2019, pp. 8092–8101.

  3. A. Kendall and R. Cipolla, “Geometric loss functions for camera pose regression with deep learning,” in Proc. CVPR, 2017, pp. 5974–5983.

  4. K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction,” in Proc. CVPR, 2017, pp. 6565–6574.

  5. Z. Teed and J. Deng, “DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras,” in Proc. CVPR, 2021, pp. 1201–1210.

  6. Y. Tian, Z. Yang, Y. Xu, and S. Song, “GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting,” arXiv preprint arXiv:2312.11438, 2023.

  7. B. Bescos, J. M. Fácil, J. Civera, and J. Neira, “DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 4076–4083, 2018.

  8. R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD: CNN architecture for weakly supervised place recognition,” in Proc. CVPR, 2016, pp. 5297–5307.

  9. M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison, “CodeSLAM—Learning a compact, optimisable representation for dense visual SLAM,” in Proc. CVPR, 2018, pp. 2560–2568.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值