AI图像分割总汇

AI 图像分割模型是计算机视觉中的核心研究方向之一,广泛用于自动驾驶、医学影像、遥感图像分析等领域。下面是对图像分割模型的一些 总汇与归类,按任务类型模型架构演进进行系统整理。


图像分割模型总览

图像分割可以按任务类别划分为:


一、按任务类型分类

任务类型描述
1. 语义分割 (Semantic Segmentation)为每个像素赋予一个语义标签(如人、车、背景),不区分实例。
2. 实例分割 (Instance Segmentation)分割图像中每个独立实例,兼顾语义分割与目标检测。
3. 全景分割 (Panoptic Segmentation)同时输出语义信息和实例边界,融合语义+实例分割。
4. 视频分割 (Video Segmentation)分割连续帧中的对象,考虑时序一致性。
5. 医学图像分割CT/MRI 等医学图像中的器官、病灶等分割,精度要求高。

二、按模型架构发展演进分类

1️编码器-解码器结构(Encoder-Decoder)
模型年份特点
FCN (Fully Convolutional Network)2015第一代语义分割,使用卷积替代全连接层输出像素标签。
SegNet2015解码器部分用最大池化索引进行上采样。
U-Net2015医学图像经典结构,编码器对称连接解码器(skip connection)。
DeepLab 系列 (v1-v3+)2015~2018使用 Atrous 空洞卷积+CRF 后处理,v3+引入更深层次的 encoder(Xception)。
2️基于注意力机制的模型
模型年份特点
PSPNet2017Pyramid Scene Parsing 模块,用于捕捉多尺度上下文信息。
OCRNet (Object-Contextual Representation)2020使用对象上下文注意力机制。
CCNet2019使用 Criss-Cross Attention 捕捉长程依赖。
3️基于 Transformer 的分割模型(Vision Transformer 类)
模型年份特点
SETR (Segmenter using Transformer)2020用纯 Transformer 替代 CNN 提取特征。
Segmenter2021类似 ViT,在 patch token 上直接做分割预测。
MaskFormer / Mask2Former2021~2022使用统一架构处理语义/实例/全景分割,基于 Transformer 解码。
MedFormer2022专用于医学图像的 Transformer 分割模型。
4️实例与全景分割方向
模型类型特点
Mask R-CNN实例分割在 Faster R-CNN 加上 mask 分支。
YOLACT / YOLACT++实时实例分割Yolo 风格,效率优先,分割质量略差。
SOLO / SOLOv2实例分割通过空间位置分类完成实例划分。
Panoptic FPN全景分割多任务训练语义分割与实例分割。
Detectron2(Meta)框架提供包括 Mask R-CNN, Panoptic FPN 等模型的实现。
5️轻量化 & 工业部署方向
模型特点
BiSeNet (v1 / v2)实时语义分割,速度快,用于移动设备。
ENet极轻量的早期模型。
Fast-SCNN适用于嵌入式系统的实时语义分割。

三、按应用领域划分(补充)

领域代表模型说明
医学图像U-Net, nnUNet, MedFormer精细结构、多类器官分割
自动驾驶DeepLab, PSPNet, Panoptic FPN大场景语义+实例分割
遥感图像HRNet, UNet++处理高分辨率地理图像
工业缺陷检测SegNet, U-Net 变种对纹理和形状敏感

常用开源库 / 工具框架

名称简介
Detectron2Meta AI 的分割框架,支持多种模型。
mmsegmentationOpenMMLab 出品,功能全面,支持训练/评估。
SegFormer / Mask2Former (Hugging Face)多种预训练 Transformer 分割模型。
MONAI医学图像分割 PyTorch 工具集。
NVIDIA TAO Toolkit工业部署、轻量化分割方案,适配 Jetson。

小结图:

FCN
 ├── SegNet
 ├── U-Net
 │   ├── UNet++
 │   └── nnUNet
 └── DeepLab → DeepLabv3+
 
注意力机制
 ├── PSPNet
 └── OCRNet, CCNet

Transformer系列
 ├── SETR, Segmenter
 └── MaskFormer → Mask2Former

实例分割
 ├── Mask R-CNN
 ├── SOLO
 └── YOLACT

全景分割
 └── Panoptic FPN

轻量化方向
 ├── ENet
 ├── BiSeNet
 └── Fast-SCNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值