1、 FPFH原理
快速点特征直方图(Fast Point Feature Histograms,简称FPFH)是对PFH(Point Feature Histograms)计算方法的一种简化,具体内容看参考十四节内容。该方法的核心在于独立计算查询点的K邻域内每个点的简化点特征直方图(Simplified Point Feature Histogram,简称SPFH),然后利用特定公式将所有SPFH加权合并,形成最终的FPFH。通过这种方式,FPFH将算法的计算复杂度降低至O(nk),同时依然保持了PFH的大部分识别特性。FPFH特征描述具体内容为如下。
1、计算简化点特征直方图(SPFH)
首先,只计算每个查询点Pq和它邻域点之间的三元特征,将<α,Φ,Φ,d>特征简化为<α,Φ, Φ>。FPFH只计算查询点和近邻点之间的特征元素。如1图,是PFH计算特征过程,即邻域点所有组合的特征值,图2是FPFH的计算内容,只需要计算Pq(查询点)和紧邻点(图2中红线部分)之间的特征元素。可知图2中的操作降低了复杂度,将其称之为SPFH(simple point feature histograms)。
订阅专栏 解锁全文
1541

被折叠的 条评论
为什么被折叠?



