点云数据集汇总整理(2025/05/18日更新......)

点云数据集在计算机视觉和深度学习中用于各种任务,包括三维重建、物体识别、语义分割、姿态估计等。整理点云数据集时,可以根据应用场景和数据集的特性进行分类。以下是一些知名和常用的点云数据集的汇总:

1. ModelNet 系列

  • ModelNet10 / ModelNet40
    • 描述:包含 3D CAD 模型的点云数据集,用于分类任务。ModelNet10 包含 10 类物体,ModelNet40 包含 40 类物体。
    • 应用:物体分类、物体识别。
    • 下载链接ModelNet

2. ShapeNet

  • 描述:是一个包含丰富 3D 模型的大型数据集,覆盖了数百类物体。ShapeNet 通过将三维模型转换为点云数据,适用于多个计算机视觉任务。
  • 应用:物体识别、语义分割、三维重建。
  • 下载链接ShapeNet

3. ScanNet

  • 描述:包含丰富的室内场景点云数据,ScanNet 提供了大规模的 RGB-D 图像和对应的点云数据,带有对象标签、场景标签和语义标签。
  • 应用:室内场景理解、物体检测、语义分割。
  • 下载链接ScanNet

4. S3DIS (Stanford 3D Indoor Spaces)

  • 描述:一个高质量的室内数据集,包含多个房间和建筑的点云数据,标注了细粒度的语义信息(如墙、桌子、椅子等)。
  • 应用:室内场景语义分割、场景理解。
  • 下载链接S3DIS

5. KITTI

  • 描述:包含来自自动驾驶车辆的点云数据,主要用于评估自驾车中的立体视觉、激光雷达和点云处理。
  • 应用:自动驾驶、物体检测、立体匹配、定位。
  • 下载链接KITTI

6. NuScenes

  • 描述:这是一个大型自动驾驶数据集,提供了来自不同传感器(激光雷达、摄像头、雷达等)的多模态数据,包含城市道路上的点云。
  • 应用:自动驾驶、物体检测、3D感知。
  • 下载链接NuScenes

7. SemanticKITTI

  • 描述:是基于 KITTI 数据集的一个扩展,带有详细的语义标签信息,专注于城市道路的自动驾驶场景。
  • 应用:语义分割、自动驾驶。
  • 下载链接SemanticKITTI

8. SUN RGB-D

  • 描述:包含丰富的 RGB-D 图像和相应的 3D 点云数据,适用于室内场景的物体识别和定位任务。
  • 应用:物体识别、室内场景分析、语义分割。
  • 下载链接SUN RGB-D

9. ApolloScape

  • 描述:一个用于自动驾驶场景的点云数据集,提供了来自多传感器(激光雷达、摄像头等)的数据,主要用于 3D 环境建模和物体检测。
  • 应用:自动驾驶、3D场景重建、物体检测。
  • 下载链接ApolloScape

10. PartNet

  • 描述:提供了 3D 部件级的细粒度模型点云数据,适用于对物体进行部件级别的分割与识别。
  • 应用:物体分割、部件级别的语义分割。
  • 下载链接PartNet

11. Stanford 3D Scanning Repository

  • 描述:包含多个物体和场景的高质量 3D 扫描,适用于几何重建和点云处理算法的评估。
  • 应用:三维重建、点云配准。
  • 下载链接Stanford 3D Scanning

12. PASCAL 3D+

  • 描述:用于多视角 3D 物体识别的点云数据集,包含 12 类物体的三维模型。
  • 应用:物体识别、三维重建。
  • 下载链接PASCAL 3D+

13. Indoor LIDAR

  • 描述:提供用于室内空间建模的激光雷达点云数据,适用于室内导航、空间分析等任务。
  • 应用:室内建模、空间分析。
  • 下载链接Indoor LIDAR
    明白了!你说的 Craslab 发布的自动驾驶、机器人感知、点云处理、视觉SLAM 等多个方面的数据集,我帮你整理一个详细的介绍,方便你了解这些数据集的特点、内容和用途。

14. Craslab 数据集概览

1. 领域与应用

Craslab 主要专注于以下几个方向的数据集发布:

  • 自动驾驶:多传感器数据融合,真实道路场景数据
  • 机器人感知:室内外机器人导航所需的视觉、激光雷达及IMU数据
  • 点云处理:高密度激光点云数据,带有标注信息,支持三维重建和配准
  • 视觉SLAM:RGB-D、单目/双目相机和IMU组合数据,支持SLAM系统研发与评测

2. 数据集特点
  • 多传感器融合:数据通常包括激光雷达(LiDAR)、相机(RGB、RGB-D)、IMU、GPS等传感器的同步数据
  • 高精度标注:包括地面真实位姿(ground truth)、语义标签、地图信息
  • 多样环境:城市道路、高速公路、室内环境、室外复杂环境等多场景覆盖
  • 公开可用:大部分数据集对科研开放,方便SLAM、定位、路径规划、感知算法的开发和测试
  • 丰富的格式支持:常见的ROS bag文件格式、PCL点云格式、图像序列、文本标注文件等

3. 典型数据集示例
数据集名称传感器类型场景主要用途备注
Craslab LIO Dataset3D LiDAR + IMU + Camera城市道路,室内外激光-惯性视觉里程计(LIO)支持多传感器联合优化
Craslab UrbanDriveLiDAR + Camera + GPS城市道路,自动驾驶自动驾驶定位与感知带高精度GPS定位
Craslab PointCloud高密度激光点云室内复杂环境点云配准与地图构建包含多尺度点云
Craslab Visual SLAMRGB-D + IMU室内实验室环境视觉SLAM算法评测支持光流与特征跟踪

4. 典型数据格式说明
  • 激光雷达点云.pcd.bin格式,含XYZ坐标和强度信息
  • 相机图像:常为.png.jpg序列,带时间戳对齐
  • IMU数据:文本或ROS消息格式,包含加速度和角速度数据
  • GPS/里程计:用于定位参考的经纬度和速度信息
  • 标注文件:包含点云的语义标签或轨迹的地面真值位姿

5. 使用建议与资源
  • 官网/代码仓库:建议关注 Craslab 官方GitHub仓库或官网,他们通常提供下载链接和示例代码
  • 常用工具:ROS、PCL、Open3D、Eigen等库用于处理数据和算法开发
  • SLAM框架结合:数据集常被用于验证LIO-SAM、LOAM、ORB-SLAM3等开源系统
  • 文档和教程:官方通常会提供详细的使用文档、数据结构说明、同步方式等

总结

这些数据集为点云处理领域提供了丰富的资源,从物体分类、物体识别到三维场景重建和自动驾驶,它们广泛应用于多个计算机视觉和机器学习任务中。根据需求选择合适的数据集可以帮助加速研究和开发。

### 机载雷达点云数据下载链接与格式 #### 数据概述 机载激光雷达(LiDAR)点云数据被广泛应用于地形建模、城市规划以及自动驾驶等领域。以下是几个常见的机载雷达点云数据及其下载方式。 #### 推荐的数据及下载链接 1. **Waymo Open Dataset** Waymo 提供了一个大规模的开放数据,其中包括 LiDAR 和摄像头传感器采数据。虽然主要面向自动驾驶领域,但也包含了丰富的点云数据。 - 下载地址: [https://waymo.com/open/](https://waymo.com/open/) (需注册账号)[^1] 2. **Vaihingen 数据** Vaihingen 是一个经典的机载点云数据,涵盖了平原和丘陵地区,包含建筑物和植被等多种场景。该数据适合用于测试点云分割和分类算法。 - 描述: 平原和丘陵区域,建筑物和植被均有覆盖[^1] 3. **ALS 机载点云数据** PCL 官方推荐了一组 ALS(Airborne Laser Scanning)机载点云数据,适用于学术研究和实验验证。此数据中包含多个区块的点云数据,部分区块已提供局部展示图像。 - 百度网盘链接: 可通过指定链接访问并下载[^2] 4. **高密度电力线路 LiDAR 点云数据** 此数据由无人机 LiDAR 系统获取,具有极高的点云密度(约 300 点/平方米),特别适于复杂环境下的精细分析。 - 特征: 高密度点云,适用于电力线路检测等应用场景[^3] #### 文件格式说明 机载雷达点云数据通常以以下几种常见格式存储: - **LAS/LAZ**: LAS 是标点云文件格式,LAZ 则是其压缩版本,两者均支持三维坐标和其他属性信息。 - **PLY**: 多边形文件格式,常用于表示三角网格或点云数据。 - **XYZ/TXT**: 纯文本格式,每行记录一个点的空间坐标及相关属性。 对于上述提到的数据,多数会提供 `.las` 或者 `.laz` 格式的原始点云文件,同时也可能附带其他辅助信息(如影像图或标注文件)。 --- ```python import laspy # 加载 .las/.laz 格式点云文件 file_path = 'path_to_your_las_file.las' with laspy.open(file_path) as f: point_cloud_data = f.read() print(f"Point cloud has {len(point_cloud_data.points)} points.") ``` 以上代码片段展示了如何利用 `laspy` 库加载 `.las` 或 `.laz` 格式的点云文件,并打印总点数。 --- ### 改进建议与未来方向 当前针对点云数据的研究主要中于提高分割算法效率和优化非地面实体分类效果方面。然而,在实际应用中发现传统机器学习方法(如随机森林)存在对输入数据敏感的问题。因此,引入深度卷积神经网络(DCNNs)成为解决此类问题的有效途径之一[^4]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值