神经网络手动实现(3)

这篇博客介绍了如何在PyTorch中实现卷积神经网络(LeNet)中的批量归一化(BN)层。BN层通过计算当前批次的均值和方差以及使用滑动平均更新历史均值和方差,来加速训练并提高模型的泛化能力。代码示例展示了在LeNet模型中添加BN层,并进行了训练和测试。
摘要由CSDN通过智能技术生成

BN层实现:

# 当前batch均值方差计算,以及历史均值方差滑动平均计算 #
def bn(x, alpha, beta, moving_mean, moving_var, momentum, eps):
    # if test #
    """
    :param x: input feature tensor
    :param alpha:
    :param beta:
    :param moving_mean:
    :param moving_var: feature data variance
    :param eps: 1e-5
    :return:
    """
    if not torch.is_grad_enabled():
    	# test 直接利用训练中的均值方差计算标准化输出
        x_hat = (x-moving_mean)/torch.sqrt(moving_var+eps)

    else:
        assert len(x.shape) in (2, 4)
        # if linear #
        # B,F
        if len(x.shape) == 2:
            mean = x.mean(dim=0)
            var = ((x - mean)**2).mean(dim=0)
        # if conv #
        # B,C,H,W
        elif len(x.shape) == 4:
            mean = x.mean(dim=(0, 2, 3), keepdim=True)
            var = ((x - mean)**2).mean(dim=(0, 2, 3), keepdim=True)
        moving_mean = momentum * moving_mean + (1-momentum) * mean
        # print("mean device:", mean.device)
        moving_var = momentum * moving_var + (1-momentum) * var
        x_hat = (x-mean)/(torch.sqrt(var+eps))
    Y = alpha * x_hat + beta
    return Y, moving_mean.data, moving_var.data

# BN层构建 #
class BN(nn.Module):
    def __init__(self, num_features, num_dim):
        super(BN, self).__init__()
        if num_dim == 2:
            shape = (1, num_features)
        elif num_dim == 4:
            shape = (1, num_features, 1, 1)
        self.alpha = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)

    def forward(self, x):
        # print("x device:", x.device)
        if self.moving_mean.device != x.device:
            self.moving_mean = self.moving_mean.to(x.device)
            # print("self device:", self.moving_mean.device)
            self.moving_var = self.moving_var.to(x.device)
        Y, self.moving_mean, self.moving_var = bn(
            x, self.alpha, self.beta,
            self.moving_mean, self.moving_var, momentum=0.9, eps=1e-5)
        return Y

在Lenet中加入bn层训练测试:

import torch
from d2l import torch as d2l
import torch.nn as nn

# net model #
class Reshpe(nn.Module):
    def __init__(self):
        super(Reshpe, self).__init__()

    def forward(self, x):
        return x.reshape(-1, 1, 28, 28)

class lenet(nn.Module):
    def __init__(self):
        super(lenet, self).__init__()
        # self.a = 0
        self.reshape = Reshpe()
        self.net = nn.Sequential(
            self.reshape, nn.Conv2d(1, 6, kernel_size=5, padding=2), BN(6, num_dim=4), nn.Sigmoid(), nn.AvgPool2d(2, 2),
            nn.Conv2d(6, 16, kernel_size=5), BN(16, num_dim=4), nn.Sigmoid(), nn.AvgPool2d(2, 2),
            nn.Flatten(), nn.Linear(400, 120), BN(120, num_dim=2), nn.Sigmoid(),
            nn.Linear(120, 84), BN(84, num_dim=2), nn.Sigmoid(),
            nn.Linear(84, 10)
        )


        self.init_weight()

    def forward(self, x):
        return self.net(x)

    def init_weight(self):
        for m in self.net:
            if type(m) == nn.Linear or type(m) == nn.Conv2d:
                nn.init.xavier_normal_(m.weight)

net = lenet()
# print(net.net)
# data #
batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

# loss #
loss = nn.CrossEntropyLoss()

# optim #
lr = 0.05
optim = torch.optim.SGD(net.parameters(), lr=lr)


# trian #
# """
def train_model(net, train_iter, test_iter, optim, loss, num_epochs, device):
    print("train on :", device)
    net.to(device)
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        net.train()
        for i, (x,y) in enumerate(train_iter):
            x, y = x.to(device), y.to(device)
            optim.zero_grad()
            y_hat = net(x)
            # print("@"*15)
            # print(y_hat.shape)
            l = loss(y_hat, y)
            l.backward()
            # pdb.set_trace()
            # print(net.net[1].weight.shape)
            optim.step()
            metric.add(l * x.shape[0], d2l.accuracy(y_hat, y), x.shape[0])
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]

        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)

        print(f"loss: {train_l:.3f}, train_acc: {train_acc:.3f}, test_acc: {test_acc:.3f}")

num_epochs = 10
train_model(net, train_iter, test_iter, optim, loss, num_epochs, d2l.try_gpu())
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值