1. 什么是rollout参数
rollout 参数主要用于控制策略模型在采样过程中的行为,具体来说,它决定了在每个问题上生成多少个候选输出(即 rollout 数量)。这些候选输出会被奖励模型(reward model)打分,并用于后续的策略更新。
- 生成候选输出:对于每个输入问题,策略模型会根据 rollout 参数生成多个候选答案。这些候选答案的多样性有助于算法探索不同的策略方向。
- 奖励评估:每个候选输出会通过奖励模型进行打分,这些分数经过归一化后作为优势值(advantage),用于计算策略更新的损失函数。
- 控制探索与利用:rollout 参数的大小直接影响策略的探索程度。较大的 rollout 数量可以增加策略的多样性,但也会增加计算成本。
2. rollout常见设计策略
在 GRPO(Group Relative Policy Optimization)算法中,Rollout 参数的设置策略通常是根据训练阶段动态调整的,通常会随着训练的进行从较大值逐渐减小。例如,初始阶段可能设置为 32 或 64,随后逐步减少到 16 或更小。
- 初始阶段(高 Rollout):设置较高的 Rollout 数量(如 64 或 32),以快速探索策略空间并提供丰富的奖励信号。
- 中间阶段(中等 Rollout):随着模型策略的初步收敛,将 Rollout 数量减少-到中等水平(如 32 或 16),以平衡计算成本和策略优化。
- 后期阶段(低 Rollout):在模型接近最优策略时,进一步减少 Rollout 数量(如 16 或 8),以提高训练效率并减少计算资源的消耗