推荐系统开源工具RecBole学习

RecBole是AI Box团队基于PyTorch的推荐系统算法库,涵盖多种推荐模型,如LightGCN。它提供统一的数据格式,支持28个基准数据集,便于算法构建和实验。文章介绍了数据组织、模型、评估设置和调参,并通过LightGCN实例展示模型运行流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章全文首发:码农的科研笔记(公众号)

推荐系统开源工具RecBole学习


RecBole是由AI Box团队开发的基于Pytorch的推荐系统算法库。该框架从数据处理、模型开发和算法训练都有涉及,能方便进行算法构建和实验对比。

RecBole架构

数据组织形式

RecBole约定了一个统一、易用的数据文件格式,并已支持 28 个 benchmark dataset。同时可以选择使用数据集预处理脚本,或直接下载已被处理好的数据集文件。recbole有一个默认的数据集 ml-100k 存在目录 ./RecBole/dataset/ml-100k中,官方doc给出的所有例子都是直接加载的这个数据集。

ml-100k.item:item_id:token	movie_title:token_seq	release_year:token	class:token_seq
例如: 1	Toy Story	1995	Animation Children's Comedy
ml-100k.user: user_id:token	age:token	gender:token	occupation:token	zip_code:token
例如: 1	24	M	technician	85711
ml-100k.inter: user_id:token	item_id:token	rating:float	timestamp:float
例如: 196	242	3	881250949

RecBole典型数据文件如下,其中针对不同类型推荐算法所需数据文件会有所不同。

后缀 含义 例子
.inter 用户-商品交互特征 user_id, item_id, rating, timestamp, review
.user 用户特征 user_id, age, gender
.item 商品特征 item_id, category
.kg 知识图谱三元组 head_entity, tail_entity, relation
.link
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值