回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
通过样本数据建立的回归方程一般不能直接立即用于对实际问题的分析和预测,需要进行各种统计检验,主要包括回归方程的拟合优度检验、回归方程显著性检验、回归系数显著性检验、残差分析、异常值检验和多重共线性检验等。接下来详细的介绍回归分析的各种统计检验:
1. 拟合优度检验
回归方程的拟合优度检验是为了检验样本数据点在回归线周围的密集程度,从而用来评估回归方程对样本数据的代表程度。拟合优度是用于评价自变量对因变量的解释程度,拟合优度越高(越接近于1),表示自变量对因变量的解释越强,反之越弱。
回归方程预测值和实际观察值的差异主要由解释变量x取值不同造成以及其他随机因素两方面造成。
回归平方和(SSA):
SSA=∑i=1n(y^i−y¯)2
残差平方和(也称为剩余平方和,SSE):
SSA=∑i=1n(yi−