回归分析的基本步骤

回归分析涉及多种统计检验,如拟合优度检验、回归方程显著性、回归系数显著性、残差分析、异常值检验及多重共线性检验。拟合优度衡量自变量对因变量的解释程度,R^2 接近1表示拟合度高。检验过程旨在确保回归方程的有效性和可靠性。
摘要由CSDN通过智能技术生成

回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

通过样本数据建立的回归方程一般不能直接立即用于对实际问题的分析和预测,需要进行各种统计检验,主要包括回归方程的拟合优度检验、回归方程显著性检验、回归系数显著性检验、残差分析、异常值检验和多重共线性检验等。接下来详细的介绍回归分析的各种统计检验:

1. 拟合优度检验

回归方程的拟合优度检验是为了检验样本数据点在回归线周围的密集程度,从而用来评估回归方程对样本数据的代表程度。拟合优度是用于评价自变量对因变量的解释程度,拟合优度越高(越接近于1),表示自变量对因变量的解释越强,反之越弱。
回归方程预测值和实际观察值的差异主要由解释变量x取值不同造成以及其他随机因素两方面造成。

回归平方和(SSA):

SSA=i=1n(y^iy¯)2

残差平方和(也称为剩余平方和,SSE):
SSA=i=1n(yi
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值